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Computer and other technical systems are expected to be reliable during operation. However, their 

growing complexity, which is related to the intricate interdependencies among many heterogeneous 

components, makes the development of fault-free systems an unaffordable task, in terms of time and 

cost. On the other hand, quality standards impose strict requirements on the reliability attributes and 

measures [1] [2]. Fault-tolerance techniques are used to allow systems to continue their operations even 

in presence of component failures, although in a possibly degraded mode. Hence, the quantification of 

the system reliability in combination with system performance is necessary.  

Reliability can be evaluated using several approaches, generally classiýed into two categories: 

measurements-based and model-based [3]. Generally, the former is an attractive way to estimate the 

reliability of a system since it is based on real operational data. But it is costly and time consuming 

since it is based on real operational data collected from the system or a prototype. Instead model-based 

approaches offer an abstraction of the real system avoiding unnecessary details and avoiding system 

implementation. These models can be used to compute the reliability with an acceptable approximation 

within affordable cost and time. 

State-space models are often used because of their capacity of handling different failure/repair 

behaviors, such as imperfect coverage, correlated failures, and repair dependencies [3]. Continuous-

time Markov Chains (CTMCs) are state-space models commonly used for performance and reliability 

analysis. Homogeneous Continuous Time Markov Chains (HCTMCs) assume the rates associated with 

events are time-independent and holding times exponentially distributed. Although HCTMCs are able 

to cover many cases, time-dependent rates and non-exponential distributions are also present in many 

real world situations [4, 5]. In such cases, Non Homogeneous Continuous Time Markov Chains 

(NHCTMCs), Semi-Markov Processes (SMPs), Markov Regenerative Processes (MRGPs), or Phase 

type approximation can be used. 

In order to show how to compute the reliability of a system based on a probabilistic model, consider the 

example of a two processors parallel redundant system with imperfect coverage, adapted from [6]. The 

system has two processors with the same time-independent failure rate and single repair facility with a 

certain repair rate. Imperfect coverage means that not all individual processor failures are recovered 

from. If a covered failure occurs in one of the two processors, the other one continues working and the 

system is up, although in a degraded mode. If a not-covered failure occurs, the system fails. Such a 

situation can be easily modeled by means of a HCTMC  (see also 2.1.1 Discrete Time Markov Chains 

and 2.1.2 Continuous Time Markov Chains). However, if we consider a time-dependent failure rate for 



the processors, the model is no longer homogeneous, and the computation of the reliability becomes 

harder. 

In the following, the reliability and related indices are formally defined; subsequently, we show how to 

compute them for the aforementioned example. In particular, three different techniques are presented: 

Piecewise Constant Approximation, Phase type expansion, and discrete event Simulation. Finally, 

results obtained with these techniques are compared. 

 

BASIC DEFINITIONS  

Let X be the Time to Failure (TTF) (or lifetime) random variable of a system. It can be characterized 

either by the (cumulative) distribution function (CDF), the (probability) density function (pdf), or 

hazard rate function (Ὤὸ).  

 

The Cumulative Distribution Function (CDF) of the (non-negative) random variable X is simply 

defined as: 

Ὂ ὸ ὖὢ ὸȟ π ὸ  ӓȢ 

The probability density function (pdf) of X is defined by   

Ὢ ὸ
ὨὊ ὸ

Ὠὸ
Ȣ 

The Hazard Rate, also called Instantaneous Failure Rate, is defined by 

Ͽὸ
Ὢὸ

ρ Ὂ ὸ
Ȣ 

Reliability is defined by the Recommendation E.800 of the International Telecommunications Union 

(ITU-T) as the ñability of an item to perform a required function under given conditions for a given 

time interval.ò Hence, for a time interval ὸȟὸ ὸ, reliability Ὑὸȿὸ  defines the probability that a 

system survives in this interval, assuming that the system was working at time ὸ. 

If  ὸ π, Ὑὸȿπ defines the probability that a system is up until time t, 

Ὑὸȿπ Ὑὸ ὖὢ ὸ ρ Ὂ ὸȢ 

Another reliability index of interest is the conditional reliability that defines the probability that a 

system survives in the interval ὸȟὸ ὸ of duration ὸ, given that the system survived until time ὸ,  

Ὑ ὸ  
Ὑὸ ὸ

Ὑὸ
Ȣ 

Mean Time to Failure (MTTF) defines the expected life of a system,  

Ὁὢ ὸὪὸὨὸ ὙὸὨὸȢ
ӓӓ

 

Hence, the MTTF is closely related to the reliability. 

 

Availability is defined by ITU-T Recommendation E.800 as the ñability of an item to be in a state to 

perform a required function at a given instant of time or at any instant of time within a given time 

interval, assuming that the external resources, if required, are provided.ò 



It is important to note that reliability is the probability of a system being failure-free operation during a 

time interval, while availability is the probability of a system being failure-free at a given instant of 

time. 

Define the indicator random variable Ὅὸ that is equals to 1 when the system is up, 0 otherwise. 

  

The Instantaneous Availability (or point availability) is defined as the probability that a system is up at 

time ὸ, 

ὃὸ ὖὍὸ ρȢ 

In absence of any component or system repair, ὃὸ Ὑὸ. 

Steady State Availability or Limiting Availability (A) is the limiting value of ὃὸ when t approaches 

infinity,  

ὃ  ÌÉÍ
ӓO
ὃὸȢ   

Under very general conditions, the Steady State Availability can be shown to be: 

ὃ  
ὓὝὝὊ
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The Mean Time to Repair (MTTR) includes the time to detect a failure as well as the time to repair it. 

The Mean Time Between Failures (MTBF), instead, is the sum of MTTF and MTTR: 

ὓὝὄὊὓὝὝὊὓὝὝὙ Ȣ  

Interval Availability (or Average Availability) is a measure of the proportion of time a system is up 

within a given interval of time πȟὸ. It is defined as 

ὃ ὸ  
ρ

ὸ
 ὃὼὨὼȢ 

It is easy to demonstrate that (when both limits exist) 

ὃ  ÌÉÍ
ӓO
ὃ ὸ   ÌÉÍ

ӓO
ὃὸȢ   

For more details about availability indices, modeling, and evaluation, see Section 2.3.7 Availability. 

 

Fault-tolerant systems are able to continue providing service even in presence of component failures, 

although perhaps in a degraded mode. Assuming that at initial state the system is operating at its 

maximum performance, when a failure occurs, system performance could degrade. This kind of system 

offers several levels of performance. As a consequence, the idea of combining performance and 

reliability/availability has been developed under the name of Performability [7].  

Let S denote all possible configurations in which the system can perform its activity, and let ὢὸȟὸ
π on S define a continuous time stochastic process describing the structure of the system at time ὸ. Let 

“ ὸ be the probability that the system is in state Ὥɴ Ὓ at time t and “ be the probability that the 

system is in state Ὥɴ Ὓ when ὸ approaches infinity. Associate a reward rate to every state indicating the 

performance level offered by the system in that state. ὶ represents the reward obtained per unit time 

spent in state Ὥɴ Ὓ.   
 

Let ὤὸ  ὶ  represent the system Reward Rate at time t. It can be shown that [8] ὒὸ

 ᷿ “ †Ὠ† is the expected total amount of time spent by the system in state i during the interval (0, t]. 



 

The Expected Instantaneous Reward Rate at time t is given by 

Ὁὤὸ ὶ“ ὸȢ

ᶰ

    

The Expected Steady State Reward Rate of the system is 

Ὁὤ ÌÉÍ
ӓO
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ᶰ

    

The Accumulated Reward in ȟ◄ represents the total amount of work performed by system during 

the interval πȟὸ: 

ὣὸ  ὤὸὨὸȢ    

Then, the Expected Accumulated Reward in ȟ◄ is the amount of work done by the system during 

the interval of time πȟὸ: 

Ὁὣὸ Ὁ ὤὸὨὸ  ὉὤὸὨὸ ὶ “ ὸὨὸ ὶὒὸ

 ɴᶰ

      

Figure 1, adapted from [7], presents an example of a Markov Reward Model (MRM) with three states. 

The reward rate is 2 for State 1, 1 for State 2, and 0 for State 3. X(t) represents the possible state 

variation of the model and  Z(t) is the corresponding reward rate of the system. Y(t) is the accumulated 

reward over the time interval πȟὸ. 

 

For a CTMC with one or more absorbing states, we can also compute the Expected Accumulated 

Reward till Absorption 

ὉὣЊ ὶ “ ὼὨὼ  ὶὒЊ

 ɴ

ὶ†

 ɴᶰ

 

where † ὒЊ ÌÉÍ
ᴼ
ὒὸ is the expected total time spent in state i before absorption [8]. 

The Distribution of the Accumulated Reward till Absorption ὖὣЊ ώ can also be computed [9, 

10]. 

 

 



 
Figure 1 

  

A SIMPLE  EXAMPLE  

In this section, we present in detail the above-mentioned system to show how to compute the reliability 

and performability indices described in the previous section. 

Consider the two processors parallel redundant system with imperfect coverage introduced earlier. Let 

P1 and P2 be the two processors; both of them have the same time-dependent failure rate ‗ὸ, which is 

not dependent on the state or the task of the processor. The coverage factor, denoted by c, represents 

the proportion of individual processor failures from which the system can automatically be recovered. 

Once P1 (or P2) fails, if the failure is covered by the recovery strategy, the system can properly work, 

with only one processor, with degraded performance, otherwise it fails. The processor repair facility is 

characterized by a constant repair rate ɛ.  

The system can be modeled by a Markov chain with three states (see Figure 2): 

¶ State 2: both processors are properly working; the failure rate of each processor is ‗ὸ, hence 

the equivalent failure rate of this state is ς‗ὸ. If a failure covered by the recovery strategy 

occurs (rate ς‗ὸὧ), the system goes to State 1, otherwise to State 0 (rate ς‗ὸρ ὧ); 

¶ State 1: one processor failed because of a covered failure; the system can continue working in 

degraded mode with one processor. In this case, two possible scenarios are possible: the failed 

processor is repaired (with constant repair rate ‘) before the working one fails, then the system 

goes back to State 2; or the working processor fails (rate ‗ὸ),  and thus the system fails (State 

0); 

¶ State 0: the system is down because either both processors failed, or a non-recoverable failure 

occurred. This is an absorbing state (the system can not be repaired if this state is reached). 
 



 
Figure 2 

Note that in case there is no repair (Figure 2a) the model is an NHCTMC. Since all rates are dependent 

upon the same time dependent function ‗ὸ, the time-dependent infinitesimal generator matrix can be 

factored into a time-independent matrix and a scalar function of time. Hence we can get the solution to 

the NHCTMC by solving a related HCTMC [8]. 

When repair from State 1 back to State 2 is introduced (Figure 2b), we need to make two assumptions 

for the model to remain an NHCTMC: 

1. repair is minimal, i.e., the repaired processor is in a state (age) equal to the one before its 

failure; 

2. repair time is negligible compared to time to failure. 

 

The vector “ὸ, whose i-th element “ ὸ is the probability that the system is in state i at time t, is 

equals to π π ρ at ὸ ὸ, and the infinitesimal generator matrix is (see also 2.1.2.1 Definitions 

and Examples of CTMCs): 

ὗὸ

π π π
‗ὸ ‘ ‗ὸ ‘

ς‗ὸρ ὧ ς‗ὸὧ ς‗ὸ
 

The failure rate ‗ὸ is assumed to be the hazard rate of a two-parameter Weibull distribution: 

‗ὸ




ὸ


 

Table 1 shows the values of the parameters of the system.  and  are chosen to obtain a Weibull 

distribution with an increasing failure rate [11]; the rest of the parameters are typical values used to 

simplify computations.  

 

Parameter Value 

 2.1 

 1.02 

‘ 3.33x10-1 days 

c 0.9 

t0 0 
Table 1 ï Values of the parameters of the model. 



We focus on the computation of the aforementioned reliability and performability indices for the 

described Markov model.  

The transient behavior of a CTMC is defined by the Kolmogorov Ordinary Differential Equations 

(ODE) system [12]: 

“ὸ “ὸὗὸȠ 

“ ὸ ρȢ 

If ὗὸ is integrable, one solution exists and it is of the form “ὸ “ὸɋ ὸȟὸ . ɋ ὸȟὸ  can be, 

then, evaluated using the Peano-Baker series [13] as: 

ɋ ὸȟὸ Ὅ ὗ† Ὠ† ὗ† ὗ† Ὠ†Ὠ†

ὗ† ὗ† ȣ ὗ† Ὠ†Ὠ† ȣὨ†Ὠ† Ễ 

However, the computation of ɋ ὸȟὸ  for time-variant systems such as NHCTMCs is rather difficult. 

As a consequence, several methods have been proposed for the transient analysis of NHCTMCs as an 

alternative to the ODE approach (see also 2.1.2.2. Transient Behaviour of CTMCs), such as Piecewise 

Constant Approximation (PCA) [14] and Phase type Expansion (PH) [15]. 

The repair strategy of the system determines the method to use. Two different strategies have been 

considered [16]: 

¶ minimal repair (or as bad as before); 

¶ maximal repair (or as good as new), i.e., the repaired processor behaves as a new one (with its 

age reset to zero). 

 

In the first case, assuming that Ḻɜ ρ (MTTF of the Weibull distribution), i.e., the recovery 

strategy is much faster than the inverse of the failure frequency, the model is an NHCTMC. Such a 

model requires only a global clock to describe all time dependent transition rates, since in every state, 

each component is as old as the system. To compute the reliability/performability of this model PCA 

can be used. 

In the case of maximal repair, instead, the system is non-Markovian, since the transition rates from 

State 2 to State 1, and from State 1 to State 0 depend on how long the system has been in State 2 or 

State 1, respectively. Furthermore failure transition rate from State 1 depends on time spent by the non-

failed component in State 2 and in State 1. We note that for an SMP all transition rates can depend on 

local time. In the current model with maximal repair, neither pure global clock nor pure local clock 

suffices. The model is neither an SMP nor an NHCTMC. However, by using PH approximation we can 

solve the problem. 

For performability analysis, rewards are simply attached to the states of the Markov model by counting 

the number of active processors. In State 2, two processors are working, and hence, the reward rate is 

equal to 2; in State 1, where only one processor is working, the reward rate is 1. A reward rate equals to 

0 is associated to the absorbing State 0. Hence, the reward rates are ὶ ςȟ ὶ ρȟὶ π. 
 



PICEWISE  CONSTANT APPROXIMATION  

Piecewise constant approximation is based on considering a time-variant function Ὢὸ as constant in 

certain intervals. Given the time interval πȟὸ , it is divided into ὲ ρ shorter intervals of length ŭ: 

ὸɴ πȟὸ   ὸɴ ὭȟὭ ρȟὭ πȟρȟȣȟὲ, where the function assumes the constant value ὪὭȢ  
In the case of the failure rate ‗ὸ of the considered Markov model:  
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Ƞ Ὥ πȟρȟȣȟὲȢ 

Figure 3 shows both the Weibull failure rate of the considered problem and its piecewise constant 

approximation with  πȢυ. With selected parameters of the Weibull function the system has a 

monotonically increasing failure rate. 

 

 
Figure 3 

As a consequence of the failure rate approximation, also the infinitesimal generator matrix ὗὸ makes 

discrete changes: 
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and the system is an HCTMC in each interval ὭȟὭ ρȟὭ πȟρȟȣȟὲ. Hence, the transient 

behavior of the state probabilities can be computed as: 

“ὸ

ừ
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Ừ
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Reliability indices for the two processors system, as well as performability indices can be computed 

using SHARPE (Symbolic Hierarchical Automated Reliability and Performance Evaluator) [17], as 

shown in Figure 4. 

  

 



 
Figure 4 

Since the model presents an absorbing state (State 0), i.e. there is no repair strategy for the failure of the 

whole system, availability is not considered. Indeed, in this case, ὃὸ Ὑὸ. 

 

Reliability. Since the CTMC has an absorbing state that represents the failed system (State 0), “ ὸ is 

the probability that the system has failed at or before time t; the reliability can be simply computed as 

[8]: 

Ὑὸ ρ “ ὸȢ 

Figure 5 shows the reliability of the considered system for different values of . We note that the two 

approximations are very similar.  

 



 
Figure 5 

 

Distribution function. The cumulative distribution function of the time to failure of the system Ὂὸ
“ ὸ [8]. Figure 6 shows the Ὂὸ function of the considered system. 

 

 
Figure 6 



Probability Density function. The probability density function (pdf) of the time to failure of the system 

is presented in Figure 7. It is computed as Ὢὸ ‗ὸ“ ὸ ς‗ὸρ ὧ“ ὸ (see line 63 

in Figure 4 for the code).  

 

 

 
Figure 7 

Hazard rate. The Ὤὸ is presented in Figure 8. It is computed considering the state probabilities as 

described in [18]: Ὤὸ   (see line 64 in Figure 4). It has an increasing trend, 

but it is much less than the failure rate of each processor. Hence, the redundancy of processors and the 

recovery strategy are able to increase the reliability of the whole system. 

 



 
Figure 8 

Mean Time To Failure. The MTTF of the considered system is ρȢψρ ÙÅÁÒÓȢ It is computed considering 

the approximate numerical solution of the integral ᷿ ὙὸὨὸ 
ӓ

as the sum of the values of Ὑὸ in each 

time interval of length  times  itself (see lines 57, 80, and 96 in Figure 4).  

If we want to increase the average lifetime of the considered system, without changing the number of 

processors of the system, we should: 

¶ use processors with a smaller failure rate; 

¶ improve the detection strategy to increase the coverage; 

¶ improve the recovery strategy to increase the repair rate. 

 

Expected Instantaneous Reward Rate. Figure 9 shows the expected instantaneous reward rate along 

time. It is computed in SHARPE with the exrt() function (see line 65 in Figure 4). The trend is very 

similar to the one of the reliability of the system, apart from the amplitude of the curve. Such a measure 

is very important in order to quantify the performance of the system in presence of failure. For 

instance, suppose the reward rate being the MIPS of the processors and that it is required for the system 

to perform at least 0.5 MIPS. The expected instantaneous reward rate shows that after about 2.3 years 

the system is no longer able to provide the desired service level. Hence, a renewal strategy is necessary. 

 



 
Figure 9 

Expected Accumulated Reward. The behavior of such an index is shown in Figure 10 and it is 

computed in SHARPE by summing the results of the cexrt() function in all the time intervals of length 

 The maximum value is 3.55, reached after about 4 years. Since the .(see lines 56 and 66 in Figure 4) 

model has an absorbing state, the line y=3.55 is an asymptote and this value represents the Expected 

Accumulated Reward till Absorption, i.e., the expected reward accumulated by the system during its 

lifetime. Hence, if we consider again the reward rate being the MIPS, the maximum number of 

instructions the system is able to perform during the observation period πȟυ years is 1.12x1014. 

 



 
Figure 10 

 

PHASE TYPE EXPANSION 

In order to present how the repair policy affects the reliability and performability of the system, now 

we consider the maximal repair policy. The failure times modeled by Weibull distribution is 

approximated using the phase type expansion technique [15]. Figure 11 shows an alternative way for 

the representation of the system, which makes simpler the description of the phase type expansion 

technique and emphasizes the different clocks of each processor. In this model, the failed component 

and the respective component failure rate are distinguished. For instance, if the system is in State (1,1) 

both processors are up; in the States (0,1) and (1,0), one unique processor failed, P1 and P2, 

respectively. Finally the State (0,0) is the absorbing state of the model, which represents that both 

processors failed, and thus the system failed as well. 

 



  
Figure 11 

The approximation of the Weibull distribution can be obtained by using Phase type distributions. PH 

distributions are introduced in [15] and have been widely used in stochastic modeling since they have 

different practical advantages: the Markovian properties, the closure properties, and the approximating 

properties. Many studies propose algorithms and numerical techniques for parameter fitting [19, 11], 

and/or for comparing several approximations of non-exponential distributions, such as lognormal and 

Weibull. In [15] computation of reliability indices by means of PH distributions is discussed. In [20] it 

is described the applicability of PH distributions for modeling queuing networks. In [21] the authors 

compare several PH distributions, both continuous and discrete, and investigate which one best 

approximates a stochastic model. 

A PH distribution is defined as the distribution of time to absorption of a CTMC with n transient states 

and one absorbing state (State n+1). The inýnitesimal generator matrix ὗ of the CTMC can be 

partitioned as follows: 

ὗᴂὗ
π π

 

where ὗᴂ is a (n×n) matrix that describes the transition rates between transient states of the CTMC and 

ὗ  is the column vector of the transition rates to the absorbing state 0. The tuple “ ȟὗᴂ completely 

represents the PH distribution of order n, where “ᴂπ is the (n+1) initial probability vector. For the 

formal definition of PH distributions and their properties see Section 2.2.6.2 Phase-Type Distribution. 

 

The steps involved in PH expansion are: i) the choice of stage combinations, e.g., stages in series or 

parallels, and ii)  the derivation of the PH distribution parameters based on parameters of the original 

distribution. Depending on the approximated stochastic model, several stage combinations can be 

selected. In [22] some examples are provided. We use the n-stages Erlang distribution. The stages are 

sequentially traversed and the non-negative continuous random variable represents the sum of the n s-

independent exponentially distributed random variables with rate . Hence, the pdf of the resulting 

random variable X, which will be the approximation of the Weibull distribution, is the pdf of the n-

stages Erlang distribution: 

Ὢὼ
ὼ

ὲ ρȦ
Ὡ  



Depending on the distribution to be approximated, different approaches can be used for evaluating the 

parameters of PH distribution (i.e.,  and n), like moment matching [22], function fitting and hybrid 

methods [11]. We will use moment matching approach since it allows us to compute a closed form 

expression for the failure rate  and, also, for the number of stages, n: 

ά
ὲ


ά

ὲὲ ρ


       

ά
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ά
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Equalizing m1 and m2 to the first two moments of Weibull distribution,  

 

By substituting ,   (see Table 1) in the above formulas, we obtain n=4 and  τȢτςχ. 

If the computed value n is non-integer, it has to be rounded to the nearest integer. In this case,  has to 

be recalculated accordingly. 

 

Figure 12 shows the comparison of the Weibull pdf and the approximation obtained with PH 

expansion; the maximum error is 0.14. It is worth noting that, while selecting a proper stage 

combination, both the pdf and the hazard rate have to be checked. Figure 13 shows the comparison of 

the hazard rates. Since the hazard rates look quite different it would be preferable to adopt a different 

stage combination in order to have a better approximation. However, the identification of the best PH 

approximation for the considered Weibull distribution is out of the scope of this paper. 

 

 
Figure 12 

 

m1 = b G (1+
1

a
), m2 = b 2G (1+

2

a
)

a = 2.1 b = 1.02



 
Figure 13 

The system model resulting from using PH expansion is presented in Figure 14. System states are 

represented specifying the number of phases for each processor. Hence, if the system is in State (4,4), 

both the components are up and they are at the stages 4. The failure of component P1 is represented by 

States (0,j), with j=1,..,4. The failure of component P2 is represented by States (i,0), with i=1,..,4. State 

(0,0) represents the system failure. A component failure, i.e. the transitions from States (1,j) to (0,j), or 

the transitions from States (i,1) to (i,0), can be covered with probability c. When a failure is not covered 

the system fails (transitions from States (i,1) and (1,j) to State (0,0)). When a component fails, it can be 

repaired or restored, becoming as good as new. This is represented by the transitions from States (0,j) 

to States (4,j) and by the transitions from States (i,0) to States (i,4). 

 



 
Figure 14 

An example of the SHARPE code for the specific example under analysis is shown in Figure 19.  

 

Reliability. The system reliability is computed as Ὑὸ ρ “ ὸ (see Figure 15). The reliability 

function is computed using SHARPE (see line 165 in Figure 19 for the code).  

 

Cumulative Distribution function. The CDF function is presented in Figure 16. It is computed by 

means of SHARPE tvalue() function (see line 166 in Figure 19).  

 

Probability Density function. Figure 17 presents the pdf of the time to failure computed in SHARPE 

(see line 167 in Figure 19). 

 

Hazard rate.  The failure rate is shown in Figure 18. It is computed using the formula defined in the 

basic definitions section (see line 170 in Figure 19).  

 


