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Computer andbther technicakystems are expected to be reliableing operation However, thar
growing complexity,which is related to the intricate interdependencies among fnei@yogeneous
components, makes the development of fekt systems an unaffordable task, in terms of time and
cost. On the other hand, quality standamdpose strict requirements dhe reliability attributes and
measure$l] [2]. Faulttoleranceechniques are used to allow systems to continue their operations even
in presence of component failures, although possiblydegraded mode. Hence, the quantification of
the systenreliability in combination with system performance is necessary.

Reliad | i ty can be evaluated using sever al appro
measurememtbased andnodd-based[3]. Generally, he formeris an attractiveway to estimatethe
reliability of a system sincé is based on real operational daBut it is costly and time consuming
sinceit is based on real operational datalected from the system amprototype Instead modebased
approache®ffer an abstraabtin of the reakystemavoiding unnecessary details aadbiding system
implementation These models can be used to compute the reliabilibyan acceptabl@approximation
within affordablecost andime.

Statespace models are often usedcause ofthar capaity of handling different failure/repair
behavios, such as imperfect coveragmrrelated failuresand repair dependencies][ Continuous
time MarkovChains (CTMCs)are statespace modelsommonly usedor performance and reliability
analysisHomogeneous Continuous Time Markov ChaiH€TMCs) assume the rates associatéti
eventsaretime-independentaind holding times exponentially distributesfithough HCTMCs are able

to cover many cases, tintependent rates and nrerponential distributions are also present in many
real world situationd4, 5]. In such casgesNon Homogeneous Continuous Time Markov Chains
(NHCTMCs), SemiMarkov Processes (SMRsYlarkov Regenerative Processes (MRGRs)Phase
type approximation can be used.

In order to show how to compute the reliability of a system based on a probabilistic condedethe
example ofatwo processa parallel redundant systemith imperfect coveragadapted fronj6]. The
system has two processors with the séime-independentailure rate andingle repair facilitywith a
certain repair ratelmperfect coverageneans that ot all individual processofailures are recovered
from. If a covered failureoccursin one of the tw@rocessa, theotheronecontinues workingandthe
system is upalthough in a degradedode If a not-coveredfailure occuss, the system failsSuch a
situationcan beeasily modeledy means oA HCTMC (seealso2.1.1Discrete Time Markov Chains
and 2.1.2Continuous Time Markov ChandHowever, if we considea timedependent failure rate for



the processorghe modelis no longerhomogeneoysandthe computation of theeliability becomes
harder.

In the following thereliability and relatedndices ardormally defined subsequentlywe showhow to

computethem for the aforementioned example. particular,threedifferenttechniquesare presented
PiecewiseConstant Approximation, Phase ype &pansion anddiscrete evenSimulation. Finally,

resultsobtainedwith thesetechniquesarecompared.

BASIC DEFINITIONS

Let X be theTime toFailure (TTF) (or lifetime) random variable of a system. It can be characterized
either by the (cumulative) distribution functio€F), the (probability) density functionpdf), or
hazard rate functioriQo ).

The Cumulative Distribution Function(CDF) of the (nornegative) random variabkis simply
defined as:
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Theprobability densityfunction (pdf) of X is defined by
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TheHazard Rate also callednstantaneou&ailure Rate, is defined by
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Reliability is defined by the Recommendation E.800 of the International Telecommunications Union
(ITU-T) as the dAability of an item to perform a
ti me i nt er vatime itentdledric eq, relfallity 'Y 6 defines the probability that a
system survives in this interval, assuming that the system was working &t time

If 0 1Y oot defines the probability that a system is up until titme
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Another reliability index of interest is theonditional reliability that defines the probability that a
system survivem theinterval 0 ho 0 of durationg, given that the system survived until time
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Mean Time to Failure(MTTF) defines the expected life of a system,
o 0'QQo0 YoQs

Hence, the MTTF is closely related to the reliability.

Availability is defined by ITUT Recommendati on E. 800 as the fabi
perform a required function at a given instant of time or at any instant of time within a given time
interval, assuming that the external resources,



It is important to note that reliability is the probability of a system bailgre-free operation during a
time interval, while availability is the probability of a system being faifoee at a given instant of
time.

Define theindicatorrandom variablé00 that is equals to 1 when the system is up, 0 otherwise.

The Instantaneous Availability(or point availability) is defined as the probability that a system is up at
time o,
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In absence ainy component or systerepair,0 6 Y O.

Steady State Availabilitypr Limiting Availability (A) is the limiting value ob 6 whent approaches
infinity,
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Under very general conditions, the Steady State Availability can be shown to be:
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TheMean Time to Repai(MTTR) includes the time to detect a failuas well aghe time to repair it.
TheMean Time Between Failure@MTBF), instead, is the sum of MTTF and MTTR:
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Interval Availability (or Average Availability is a measure of the proporti@f time a system is up
within a given interval of timert0 . It is defined as
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It is easy to demonstrate that (when both limits exist)
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For more details about availabilitydices modeling and evaluation, see Section 2.8vailability.

Faulttolerant systems are able to continue providing service even in presence of component failures,
although perhaps in a degraded mode. Assuming that at initial state the system is operating at its
maximum performance, when a failure occurs, system performance could degrade. This kind of system
offers several levels of performance. As a consequence, the idea of combining performance and
reliability/availability has been developed under the nanfeeoformability [7].

Let Sdenote all possible configurations in which the system can perform its activity, addddd

1t on Sdefine a continuous time stochastic process describing the structure of the systend.dtdime

“ 0 be the probabilitythat the system is in stat® “Yat timet and“ be the probability that the
system is in stat€) “Ywhenoapproaches infinity. Associateeward rateto every state indicating the
performance level offered by the system in that statepresentshe reward obtained per unit time
spent in staté&) Y

Letwo i represent the systeReward Rate at time t It can be shown thgi8] O 0
“ T Qfis the expected total amount of time spent by the system in stat@gtheinterval (0, t].



The Expectedn stantaneousRewardRateat time t is given by
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TheExpected Steady State Reward Rafehe system is
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The Accumulated Rward in h<represents the total amount of work performed by system during
the interval 140 :

WO ©wo'ns

Then, theExpectedAccumulated Reward in h<is the amount of work done by the system during
the interval of time 10 :

Owo O wod Owo Qo i “ 00Qo i0 0
Figurel, adapted from7], presents an example of a Markov Reward Model (MRM) with three states.
The reward rate is 2 fobtate 1 1 for State2, and O forState3. X(t) represents the possbstate

variation of the modednd Z(t) is the corresponding reward rate of the systé(t).is the accumulated
reward ovethetimeinterval 0.

For a CTMC with one or more absorbing states, we can also compukxpeeted Accumulated
Rewardtill Absorption
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wheret 0 H 1 EU 0 is the expected total time spent in siatefore absorptiofs].

The Distribution of the Accumulated Reward tilAbsorptiond &G H @ can also be compute@,|
10].
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Figure 1

A SIMPLE EXAMPLE

In this sectionwe present in detail the abereentioned systerto showhow to computehe reliability

and performabilityndices describeth the previous section.

Consider theéwo processa parallel redundant system with imperfect coverageoduced earlierLet

P1 andP- be the two processors; both of them htheesamdime-dependent failure rate 6 , which is

not dependent on the statetbe task of the processdrhe coverage factor, denoted byrepresents
the proportion ofndividual processofailures from which the system can automatically be recovered.
OnceP: (or P») fails, if the failure is covered by the recovery strategy,sysgem can properly work
with only one processpwith degraded performancetherwise it fails. Th@rocessorepair facilityis
characterized by a constant repair kate

The system can beodeledoy aMarkov chainwith three stategseeFigure 2):

1 State2: bothprocessors arproperly workng; the failure rateof each processas_ 0, hence
the equivalent failure ratef this state ig_ 0. If a failure covered by the recovesyrategy
occurs (rate_ 0 ¢), the system goe® Sate 1, otherwiseo Sate O(ratec_ 6 p  ©);

i State 1 one processadiailed because of a covered failuthe systentancontinue workingn
degraded modwith oneprocessorin this case, two possible scenarios are possitefailed
processois repaired ith constantepairrate‘ ) before the working one fajlshenthe system
goes back t&tate 2 or the working processdails (rate_ 0 ), andthusthe system fail¢State
0);

1 State 0the system islown becauseeitherboth processorgailed, or a nonrecoverable failure
occurredThisis an absorbing staféhe system can not be repaired if this state is reached).
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Figure 2

Note that in case there is no repair (Figure 2a) the model is an NHCSiM¢ all rates are dependent
upon the same time dependent functioa , the timedependent infinitesimal generator matrix can be
factored into a timéndependent matrix and a scalar function of titHence we can get the solution to
the NHCTMC by soling arelatedHCTMC [8].
When repair fronftate 1back toSate 2is introduced (Figure 2b), we need to make two assumptions
for the model to remain an NHCTMC:

1. repair is minimal,i.e., the repaired processor is in a stéage) equako the one before its

failure;
2. repair time imnegligible compared to time to failure.

The vector 0, whosei-th element 0 is the probability that the system is in stat@ timet, is
equals tom 1 p atd 0, and theinfinitesimal generator matriis (see also 2.1.2.Definitions
and Examples of CTMQs
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The failure rate_ 0 is assumed tbe the hazard rate aftwo-parameter Weibull distribution:

.10
0 -~ =
- [
Table 1 shows thealues of the parameters of the systerand are chosento obtain aWeibull
distribution with an increasing failure raf#1]; the restof the parametes are typical values used to
simplify computations.

Parameter Value
| 2.1
i 1.02
‘ 3.33x10'days
C 09
to 0

Table 17 Values of the parameters of the model.



We focus on the computatioof the aforementionedeliability and performability indices for the
described Markov model.
The transient behavior of a CTMC is defined by #@amogorov Ordinary Differential Equations

(ODE) systen12]:
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If 0 O is integrable, one solution exists aids of the form* 6 “ 6 q oD .q oD can be

then,evaluated using the PeaBaker serie$l13] as
qQ oo O Ot Q 0 t 0t QfQf
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However, the computation of o for time-variant systemsuch as NHCTMCss rather difficult.
As a consequenceeweral methods have been propoBadhe transientanalysis oNHCTMCsas an
alternative to the ODREpproach(see als®.1.2.2.Transient Behaviour of CTM{ssuch as Pigewise
ConstantApproximation (FZA) [14] andPhaseytpe Expansion (PH)L5].
The repair strategy of the systetetermines the method to uSavo different strategiehave been
considered16]:

1 minimal repair (or as bad as befoje

1 maximalrepair (or as good as ne\i.e, the repaired processbehavesas a new one (with its

age reset to zero).

In the first caseassuminghat-L T 3 — p (MTTF of the Weibull distributiol i.e., the recovery

strategyis much fasteithanthe inverse of the failure frequencthe model is a NHCTMC. Such a
model requires only global clockto describeall time dependent transition ratescein every state,
each component is as old as the systeoncdmputethe reliability/performability of this modePCA

can be used

In the case ofmaximalrepair, instead, the systeisinon-Markovian since thetransition ratesrom
Sate 2to Sate 1, and fromSate 1to Sate O dependon how long the systefmas beenn State 2or
Statel, respectivelyFurthermore failure transition rate frdatate ldepends on time spent by the non
failed component irstate 2and inSate 1 We note that for an SMP all transition rates can depend on
local time. In the current model with maximal repair, neither pure global clock nor pure local clock
suffices. The modas neither an SMP nomdHCTMC. However, by using PH approximation we can
solve the problem.

For performability analysis rewards arsimply attachedo the states of the Markov mod®&} counting

the number of active processolts State 2 two processors are workingnd hencgthe rewardrateis
equal to 2; irState 1 where only one processor is working, the rewatdis 1. Arewardrateequals ®

0 is associated tthe absorbin@ate Q Hencethe reward ratearei chi phi .



PICEWISE CONSTANT APPROXIMATION

Piecewiseconstantapproximation is based on considering a tiaeant functionQo as constant in
certain intervalsGiven the timeinterval o , it is divided intoe  p shorter intervals of length:

oN D ON "Oh'Q p] AQ ripfB R, wherethe function assumes the constant vaie) 8
In the case of the failure rated of the considered Markov model
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Figure 3 shows both thaVeibull failure rate of the considered probleand its piecewiseonstant
approximationwith|  1T@®. With selectedparameters of the Weibull function the system has a
monotonically increasintpilure rate

12 I I T T T T T
11— Weibul pd
e PCA //
10 ' o
9 e 1
sl / ]
£ g // ,
~ N P
4 e 1
3t // .
5 /
0 05 1 15 2 25 3 35 4 45 5
years
Figure 3

As a consequence of the failure rate approximation, also the infinitesimal generatomatrixakes
discrete changes:
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and the systemis an HCTMC in each interval'Qh'Q p| RQ mipfB FE. Hence the transient
behavior of the state probabilities can be computed as:
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Reliability indices for thewo processors systeras well as performabilitindicescan be computed
using SHARPE (Symbolic Hierarchical Automated Reliability and Performance Evaludiaf) as
shown in Figure 4.



1: format 15 53:
2: epsilon basic 10e-25 54z *dkkk
3: epsilon uniform 10e-25 55:
4: epsilon findeigen 10e-25 56: bind crc 0
5: epsilon sorteigen 10e-25 57: bind mttfa O
6: epsilon results 10e-25 58:
T: 59: func sp0(t) tvalue(d; nhctmc, 0;
8: verbose off t)
9: 60: func spl(t) tvalue(d; nhctmc, 1;
10: func 1lfr(alfa, beta, t) t)
(alfa/beta) * ((t/beta)* (alfa-1)) 61l: func sp2(t) tvalue(d; nhctmec, 2;
11: t)
12: bind 62: func R(t) 1l-sp0(t)
13: mu 120 63: func f(t) lfr(alfa, beta,
14: ¢ 0.9 t)*spl(t) + 2*(l-c)*1lfr(alfa, beta,
15: alfa 2.1 t) *sp2(t)
16: beta 1.02 64: func h(t) ( lfr(alfa, beta,
17: end t)*spl(t) + 2*(l-c)*1lfr(alfa, beta,
18: t)*sp2(t) ) / (100*( spl(t) + sp2(t)
19: bind d 0.01 ))
20: bind tmax 5.0 65: func rr(t) exrt(d; nhctmc; t)
21: 66: func cr(t) crc+cexrt(d; nhctmc; t)
22 kkkkdk 67:
23: 68: loop t, 0, tmax, d
24: markov nhctmc (t) 69:
25: 1 2 mu 70: bind crc cr(t)
26: 1 0 1fr(alfa, beta, t) 71:
27: 21 2*c*1fr(alfa, beta, t) 72 expr sp0(t)
28: 2 0 2*(l-c)*1fr(alfa, beta, t) 73: expr R(t)
29: 74 : expr h(t)
30: reward 75: expr f(t)
31: 0 rew_nhctmc_ 0 76 expr rr(t)
32: 1 rew_nhctmec 1 77: expr cr(t)
33: 2 rew_nhctmc 2 78z bind mttfa mttfa+ (R(t)*d)
34: end 79:
35: 80: bind
36: *probabilities 81: init_nhctmec 0 1-spl(t)-sp2(t)
37: 0 init nhctmc 0 82: init nhetme 1 spl(t)
38: 1 init nhctmc_1 83: init nhectmec 2  sp2(t)
39: 2 init nhctmec 2 84: end
40: end 85:
41: 86: expr init nhctmc_ 0
42: bind 87: expr init nhctmc_1
43: rew_nhctmc_0 0 88: expr init nhctmec_ 2
44: rew _nhctmc_1 1 89:
45: rew nhctmc 2 2 %0: end
46: end 91:
47: 92: *pind mttfa mttfa*d
48: bind 93: expr mttfa
49: init nhctmc 0 0 94:
50: init_nhctmc_1 0 95: end
51: init nhctmec 2 1
52: end
Figure 4

Since the model presents an absorbing s&ttad (), i.e. there is noepair strategy for the failure of the
whole system, availability is not consideréadeed, in this case, 06 'Y O.

Reliability. Since the CTMC has an absorbing stheg represents the failed systé®ate0),“ 0 is
the probability that the system has failed at or before tjrttee reliability can be simplycomputedas

[8]:

Yo p “ 08
Figure5 shows theeliability of the considered systefor different values df . We note that the two
approximations are very similar.
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Figure 5

Distribution function. Thecumulative distribution functionf thetime to failure of the systefi®o
“ 0 [8]. Figure6 showsthe™O06 functionof theconsideredystem.
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Probability Density function Theprobability density functiorfpdf) of the time to failureof the system
is presentedn Figure7. It is computecas Q0 —— _0“ 0 ¢_0 p ®“ 0 (seeline 63
in Figure 4for the codg
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Hazard rate The'Qo0 is presentedn Figure 8.1t is computed considering the state probabilitss
described in18]: Qo (seeline 64in Figure 4).lt has an increasing trend,

but it is much less than the failure rate of each processor. Hence, the redundancy of processors and the
recovery strategy are able to increase the reliability of the whole system.
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Mean Time To Failure.The MTTF of the considered systemp& dJ A AGicomputed considering
the approximatenumerial solution of the integral © *Y 6 Q @s the sum of the values¥fo in each
time interval of length times] itself (seelines 57, 80, and 96 in Figure.4)
If we want to increasthe average lifetime of the considered systenthout chaging the number of
processors of the systeme should

1 use processors with a smaller failure rate;

1 improve thedetectionstrategy to increase the coverage;

1 improve the recovery strateffyincrease the repair rate.

Expected Irstantaneous Reward Rat&igure 9shows the expected instantaneous rewardalatey

time. It is computed in SHARPE with thexrt() function Geeline 65 in Figure 4).The trend is very

similar to the one of the reliability of the system, apart from the amplitude of the curve. Such a measure
is very important in order tguantify the performance of the systeim presence of failureFor
instance, suppeshe rewardatebeing the MIPS of the processors and that it is reqdinetthe system

to perform at leadd.5 MIPS The expected instantaneous reward rate shows that after about 2.3 years
the system is no longer able to provide the desired servide Harmce, a renewal strategy is necessary.
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Expected Accumulated Rewardlrhe behaviorof suchan index is shown in FigurelO and it is
computed in SHARPE by summing the results ofdéert() function in all the time intervals of length

1 (seelines 56 and 66 in Figure 4yhe maximum value is 3% reached after about 4 yea&nce the
model has an absorbing state, the §¥8.55 is an asymptote andhis value represents thexpected
Accumulated Rewardill Absorption, i.e., the expected reward accumulated by the system during its
lifetime. Hence, if we consider again the rewaate being the MIPS the maximumnumber of
instructionsthe systenis able to perfornauring the observatioperiod v years isl.12x16
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PHASE TYPE EXPANSION

In order to present how the repair policy affects the reliability and performability of the system, now
we considerthe maximal repair policy The failure timesmodeled byWeibull distribution is
approximated using thehasetype expansionechnique[15]. Figure 11shows an alternative way for

the representation of the systemhich makes simpler the description of the phase type expansion
technique and emphasizéhge different clocks of each processbr this model, the failedomponent

and the respective component failure rate are distinguisteednstance, if the system is 8tate (1,1)

both processorsare up; in theStates (0,1) and (1,0), one unique procssr failed P1 and P,
respectively Finally the State (0,0)is the absorbing state of theodel which representthat both
processors failed, and thus the system failed as well
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The approximation of the Weibull distributiadan be obtainefly using Phase typdistributions. PH
distributionsareintroduced in 15 and have been widely used in stochastic modelinge they have
different practicaladvantagesthe Markovianpropertiesthe closureproperties, and the approximating
properties Many studies propose algorithms and numerical techniques for pardittietg 19, 11],
and/or for comparing several approximations of-egponential distributions, such as lognorraadi
Weibull. In [15] computation of reliability indices by means of PH distributions is discuss4dQ]l it

is describd the applicaility of PH distributions for modeling queuingetworks. In 21] the authors
compare several PH distributions, both cambums and discrefeand investigate which one best
approximates a stochastic model.

A PH distribution isdefined aghe distribution oftime to absorption of a CTMC withtransient states
and one absorbing stat&téte n+) . The inynit e dxionohthe QTEIQ@ ean &d o r
partitioned as follow

Oae 0

m T
where0ais a(nxn) matrix that describes theansition rates betwedransientstatesof the CTMC and
0 is the column vector of the transition rates to the absosbaig0. The tuple ©  h)azcompletely

represents the PH distribution of orderwhere® &gt is the (n+1) initial probability vector.For the
formal definition of PH distributions and their properties see Section 2Rt@a2Type Distribution

The steps involved in Plexpansion areg) the choice of stage combinations, e.g., stages in series or
parallels, andi) the derivation of the PH distribution parametbesed orparameters othe original
distribution. Depending on the approximatstchastic modelseveral stag combinations can be
selected. In22] some examples are provided. We use tistages Erlang distributiohe stages are
sequentially traversed and the Amegative continuous random variable represents the suine ofs-
independent exponentially digtuted random variables with rate Hence, theodf of the resulting
random variableX, which will be the approximation of the Weibull distribution, is i of the n-
stages Erlang distribution:

&)
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Depending on the distribution to be approximatktferentapproaches can be used for evaluating the
parameters of PH distribution (i.e.andn), like moment matchingZ2], function fitting and hybrid
methods 11]. We will use moment matching approadince it allowsus tocompute a closed form
expression for the failure rateand also,for the number of stages:
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Equalizingmy andmz to the first two moments of Weibull distribution,

1 2
=bG(1+=), m,=b’G(1+=
m, = bG( a) m, ( a)

By substitutinga =2.1, 6=1.02 (see Table 1) in the above formulas, we obtei and’ 18 ¢.X

If the computed valur is nortinteger it has to be rounded to the nearest intelyethis casd, has to
berecalculated accordingly.

Figure 12 shows the comparison of the Weibyltf and the approximation obtained with PH
expansion; the maximum error &14 It is worth noting that, while selecting a proper stage
combination, both thedf and thehazard ratehave to be checked. Figure 48owsthe comparison of
the hazardrates.Since the hazard rates look quite different it would be preferable to adidffgrant
stagecombinationin order to have a better approximatidtowever, the identification of the best PH
approximation for the considsdt Weibull distribution is out of the scope of this paper.
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The systemmodel resulting fromusing PH expansion ipresentedn Figure 14. System states are
represented specifying the number of phases for each processor. Hence, if the sys&iatas(4n4)
both the components are up and they are at the stages 4. The failure of corRpanegyiresented by
Sates(0,j), with j=1,..,4. The failure of componemR: is represented b$tates(i,0), with i=1,..,4. State
(0,0) represents the system failure. A component failure, i.e. the transitionStedes(1,j) to (0,j), or
the transitions fronstateqi,1) to (i,0), can be covered witbrobabilityc. When a failure is not covered
the system fail¢transitions fronStates (i,1) and(1,j) to State(0,0)). Whena component failgf can be
repaired or restored, becoming as good as iéne. is represented by the transitions fr8tates(0,j)
to Stateg4,j) and by the transitions frotateq(i,0) to Statei,4).



Figure 14

An example of the SHARPE codier the specific example under analyisishown in Figurd.9.

Reliability. The systenreliability is computedas’Yo p “ 0 (see Figure 16 The reliability
functionis computed using ISARPE (see line 165 in Figure 16r the code).

Cumulative Distribution function. The CDF function is presentedn Figure 16 It is computed by
means of SHARPE/alug)) function (see line 166 Figure 19.

Probability Density function.Figure 17presentghe pdf of the time to failure computed inrHARPE
(see line 167 in Figure 19

Hazard rate. The failure ratas shown in Figure 18It is computed using the forrfaudefined inthe
basic definitionsection(see linel70 in Figure 1%



