
Provided for non-commercial research and educational use only.
Not for reproduction, distribution or commercial use.

This chapter was originally published in the book Advances in Computers, Vol. 84
published by Elsevier, and the attached copy is provided by Elsevier for the author's
benefit and for the benefit of the author's institution, for non-commercial research and
educational use including without limitation use in instruction at your institution,
sending it to specific colleagues who know you, and providing a copy to your
institution’s administrator.

All other uses, reproduction and distribution, including without limitation commercial
reprints, selling or licensing copies or access, or posting on open internet sites, your
personal or institution’s website or repository, are prohibited. For exceptions,
permission may be sought for such use through Elsevier's permissions site at:

http://www.elsevier.com/locate/permissionusematerial

From: Kishor Trivedi, Ermeson Andrade, and Fumio Machida, Combining
Performance and Availability Analysis in Practice.

In Ali Hurson and Sahra Sedigh, editors: Advances in Computers, Vol. 84,
Burlington: Academic Press, 2012, pp. 1-38.

ISBN: 978-0-12-396525-7
© Copyright 2012 Elsevier Inc.

Academic Press

Author's personal copy
Combining Performance and
Availability Analysis in Practice
ADVAN

ISSN: 00
KISHOR TRIVEDI
Department of Electrical and Computer Engineering,

Duke University, Durham, North Carolina, USA
ERMESON ANDRADE
Department of Electrical and Computer Engineering,

Duke University, Durham, North Carolina, USA

Informatics Center, Federal University of Pernambuco

(UFPE), Recife, Pernambuco, Brazil
FUMIO MACHIDA
Department of Electrical and Computer Engineering,

Duke University, Durham, North Carolina, USA

Service Platforms Research Laboratories, NEC

Corporation, Kawasaki, Japan
Abstract
Composite performance and availability analysis of computer systems has

gained considerable attention in recent years. Pure performance analysis of a

system tends to be optimistic since it ignores the failure–repair behavior of the

system. On the other hand, pure availability analysis tends to be too conservative

since the behavior of the system is captured by only two states (functioning or

failed). To analyze the degradation of a system’s performance in consideration

with availability metrics, combined measures of performance and availability

are essential. This chapter introduces the basics of analytic models for the

combined performance and availability analysis of computer systems together

with some practical examples.
CES IN COMPUTERS, VOL. 84 1 Copyright © 2012 Elsevier Inc.

65-2458/DOI: 10.1016/B978-0-12-396525-7.00001-0 All rights reserved.

2 K. TRIVEDI ET AL.

Author's personal copy
1.
 I
ntroduction . 2
2.
 A
pproaches to Modeling . 3
2
.1. N
on-State-Space Models . 5
2
.2. S
tate-Space Models . 7
3.
 P
ractical Examples . 11
3
.1. P
ure Reliability/Availability and Pure Performance Analysis 11
3
.2. C
omposite Performance and Availability Analysis 23
4.
 C
onclusions . 35
R
eferences . 35
1. Introduction

The need for combining performance and availability analysis of computer

systems is increasing, since most computer systems can continue their operations

even in the presence of faults. However, software/hardware designers are still using

performance and availability measures separately to evaluate the quality of the

systems. Such separated analysis is not sufficient to properly understand and predict

the behavior of these systems because the performance is affected by the failures and

recoveries of the system components. Thus, the use of evaluation methods which

combine performance and availability analysis is essential [1–7].

In recent decades, several approaches have been developed for considering the

combined evaluation of performance, availability, and reliability [8–14]. Beaudry

[15] is the first author to develop the measures which provide trade-offs between

reliability and performance of degradable systems. Thereafter, the term perform-

ability, where the concept of performance and reliability is unified, was introduced

by Meyer [16]. He developed a general modeling framework that covers perform-

ability measures.

Quantitative evaluation of systems’ performance and reliability/availability can

be broadly classified into measurement and model-based approaches. In the mea-

surement approach, the collected data accurately show the phenomena observed in

the system, but the evaluation tends to be expensive. Some experiments are not

always feasible because they are either time-consuming or need expensive proce-

dures (like fault injections). By contrast, in the model-based approach, the evalua-

tion of systems can be carried out without the actual execution on the real system.

The model provides an abstraction of the system which does not always predict the

performance and availability accurately. However, if the models are properly

COMBINING PERFORMANCE AND AVAILABILITYANALYSIS 3

Author's personal copy
validated, the model-based approach might present a better cost-effective approach

over the measurements. Both the approaches can be used together depending on the

criticality of the system and/or availability of resources. Often, measurements are

made at the subsystem level, and these are rolled up to the system level by means of

models [17,18]. In this chapter, we discuss the model-based approach.

Different modeling techniques can be used for combining performance and

availability analysis. Among of them, the exact composite approach [3] has been

widely used because of its accuracy. However, this approach faces largeness and

stiffness problems. Largeness occurs because of a cross-product of states of perfor-

mance model and availability model. To deal with the largeness problem, two basic

techniques can be applied: largeness tolerance and largeness avoidance [4]. Stiffness

arises when the rates related to performance models are much faster than the rates of

availability models. Aggregation techniques [19] and stiffness-tolerance [20] are

effective methods in dealing with the stiffness problem. Hierarchical modeling

approach [12] is another potential largeness and stiffness avoidance technique.

This approach divides the system model into several small submodels. The sub-

models can be of different types, such as non-state-space models and state-space

models. The solution of the hierarchical model is computed by passing outputs of

lower-level submodels as inputs to the higher level submodels. In case of cyclic

dependence among submodels, fixed-point iterative can be applied [8,21].

This chapter aims to present an overview of main techniques used in model

construction and solution of composite performance and availability analysis, such

as exact composite approach and hierarchical modeling approaches. We also

describe techniques used for pure availability analysis and pure performance analy-

sis. Practical examples where such techniques were successfully applied are detailed.

The chapter is organized as follows: Section 2 introduces basics of analytic

models for evaluating performance and availability of systems and also describes

modeling techniques for combining performance and availability analysis. Section 3

describes a set of practical examples for combining availability and performance

analysis. Section 4 concludes the chapter.
2. Approaches to Modeling

In pure performance modeling, probabilistic nature of user demands (workload)

as well as internal state behavior needs to be represented under the assumption that

the system/components do not fail [4]. Several stochastic models can be used for

performance analysis, such as series–parallel directed acyclic graphs [4], product

form queuing networks [22], Markov chains [23], semi-Markov process (SMP) [1],

4 K. TRIVEDI ET AL.

Author's personal copy
Markov regenerative process [24], generalized stochastic Petri nets (GSPNs) [25],

stochastic reward nets (SRNs) [4], hierarchical [12] and fixed-point iterative [26],

and the combination of these. Metrics such as throughput, blocking probability,

mean response time, response time distribution, and utilization can be computed

based on these models.

According to ITU-T Recommendation E.800 [27], “availability is the ability of an

item to be in a state to perform a required function at a given instant of time or at any

instant of time within a given time interval, assuming that the external resources, if

required, are provided”. On February 1991, the Patriot missile defense system failed

to intercept an incoming missile. This incident resulted in the death of 28 US Army

reservists [28]. Thus, high availability of mission-critical systems is extremely

important, since failures can be catastrophic. For business critical systems and critical

infrastructures, high availability is also important to minimize the cost of downtime.

Analytic models have been widely used to predict the system availability. These

models can provide important insights about the availability considering different

scenarios before the system is released for use. The availability aspects of the system

are usually described by non-state-space models (reliability block diagram (RBD),

fault tree (FT), and reliability graph), state-space models such as Markov chains,

SMP, Markov regenerative process, stochastic Petri nets (SPNs) of various ilk, and

hierarchical and fixed-point iterative models. Downtime, steady-state availability,

instantaneous availability, and interval availability are frequently used as measures.

Assuming exponential failure and repair time distributions with respective rates l
and m, the availability at time t and the interval availability can be computed by the

following expressions [23]:

A tð Þ ¼ m
lþ m

þ m
lþ m

e� lþmð Þt

AI tð Þ ¼
Ð t
0
A xð Þdx
t

¼ m
lþ m

þ l

lþ mð Þ2t 1� e� lþmð Þt
� �

Taking a limit to infinity of the instantaneous availability, the steady-state avail-

ability Ass can be computed as below

Ass ¼ lim
t!1A tð Þ ¼ m

lþ m

The steady-state unavailability Uss and downtime (in minutes per year) are

obtained from Ass by the following expressions

Uss ¼ 1� Assð Þ
Downtime ¼ 1� Assð Þ � 8760� 60

COMBINING PERFORMANCE AND AVAILABILITYANALYSIS 5

Author's personal copy
Composite performance and availability analysis is required especially in the

evaluation of degradable systems. In degradable systems, when some system com-

ponents fail, the system can undergo a graceful degradation of performance and still

be able to continue operation at a reduced level of performance. In other words, the

system can have more than two working states (i.e., functioning, partially function-

ing, and down). One of the most used analytic model types for combining perfor-

mance and availability analysis is Markov reward model in which each state of

Markov chain is assigned a reward rate according to the performance delivered in

the state. In the following subsections, we introduce the basics of analytic modeling

for performance and availability evaluation based on two types of models: non-state-

space models and state-space models.

2.1 Non-State-Space Models

Availability models can be constructed using non-state-space models such as

reliability block diagram (RBD), reliability graph (Relgraph), and FT with and

without repeated events. Non-state-space models are easy to use and have a rela-

tively quick solution because they can be solved without generating the underlying

state space [29]. For a rapid solution, these models assume that system components

are independent of each other. System availability, system unavailability, system

reliability, and system mean time to failure can be computed using these models.

The three commonly used solution techniques for non-state-space model are factor-

ing [23], sum of disjoint products [23], and binary decision diagram [30]. Large non-

state-space model can be solved by deriving upper and lower bounds as described in

Ref. [31].

RBD is a non-state-space model type that enables analysis of reliability and

availability of complex systems using block diagrams. In a block diagram model,

components are combined into blocks in series, parallel, or k-out-of-n. A series

structure represents a direct dependency between the components where the entire

system fails if one of its components fails. A parallel structure is used to show

redundancy and means that the whole system can work properly as long as at least

one component is working properly. A k-out-of-n structure represents that the whole
subsystem can work properly as long as k or more components are working properly

out of n components. Series and parallel structures are special cases of k-out-of-n
structures [4]. A series structure is an n-out-of-n and a parallel structure is a 1-out-of-n
structure. Figure 1 shows an RBD representing a storage system availability model

with one server, one hub, and n storages devices. The system is working properly if at

least one of each device (server, hub, and storage) is working properly.

FT can be used for quantitative analysis of system reliability/availability as well

as qualitative analysis. FT depicts a combination of events and conditions that can

6 K. TRIVEDI ET AL.

Author's personal copy
lead to an undesired event such as system failure. Basic FT consists of events and

logical event connectors such as OR gates, AND gates, and k-out-of-n gates. The

events can be combined in several ways using logical gates according to the system

configuration. FT can have repeated events in situations in which the same failure

event propagates along different paths. Figure 2 presents an FT model for the storage

system with one server (S), one hub (H), and n storage devices (SD). In contrast to

the RBD model, the FT takes a “negative” view in that it describes the condition

under which the system fails. Since FTs allow repeated events, they are more

powerful than series–parallel RBDs. For a comparison of modeling power of these

model types, see Ref. [32].
Storage 1

HubServer Storage 2

Storage “n”

...

FIG. 1. RBD for a storage system.

or

and

S H SD1SD2SD“n”

...

Failure

FIG. 2. FT for a storage system.

COMBINING PERFORMANCE AND AVAILABILITYANALYSIS 7

Author's personal copy
2.2 State-Space Models

Non-state-space models such as RBD and FT cannot easily handle detailed

failure/repair behavior such as imperfect coverage, correlated failures, repair depen-

dencies, etc. On the other hand, state-space models are capable of capturing such

detailed behavior. As a well-known state-space model type, continuous-time

Markov chains (CTMCs) are widely used in performance and availability studies.

Homogenous CTMCs are represented by states and transitions between the states

whose sojourn time follows exponential distribution. If we relax the assumption of

exponential distribution, then it might become an SMP [1], a Markov regenerative

process [24], or a non-homogeneous Markov chain [33]. Labels on the transitions

for homogenous CTMC are time-independent rates. Figure 3 presents a simple

example of CTMC model for a two-component parallel redundant system with the

same repair rate m. The failure rate of both components is m. When both components

have failed, the system is considered as failed. There is a single shared repair person.

Solving for the steady-state probabilities, we have:

p2 ¼ m
2l

p1

p1 ¼ m
l
p0

Since

p0 þ p1 þ p2 ¼ 1

Thus

p0 þ m
l
p0 þ m

l

� � m
2l

� �
p0 ¼ 1

Then, the steady-state unavailability of the parallel redundant system with a

shared repair is expressed as below:

p0 ¼ 1

1þ m
l þ m2

2l2

As an approach for combining performance and availability analysis, this chapter

focuses on Markov reward models. MRMs are one of the most commonly used

techniques for combining performance and availability analysis of degradable

systems. Formally, an MRM consists of a CTMC {Z(t), t�0} with state space O.
Let Pi(t) be the unconditional probability of the CTMC being in state i at time t, then
the row vector P(t) represents the transient state probability vector. Given

4

3

2

1

Z(t)

t

4

3

2

1

X(t)

t

4

3

2

1

Y(t)

t

D

The accumulated reward
rate by time t

B

The states of the Markov
model at time t

C

The reward rate at
time t

1
r

1
=2

2
r

2
=1

3
r

3
=0

A

Markov reward model

FIG. 4. Sample of paths.

2l

m m

2 1 0

l

FIG. 3. An example of CTMC.

8 K. TRIVEDI ET AL.

Author's personal copy
L tð Þ ¼ Ðt
0

P uð Þdu, Li(t) is the expected total time spent by the CTMC in state i during

the interval [0,t). The MRMs are obtained by assigning a reward rate ri to each state i
of the CTMC (See Fig. 4A). Let X(t)¼rZ(t) denote the reward rate at time t and Y(t)

COMBINING PERFORMANCE AND AVAILABILITYANALYSIS 9

Author's personal copy
represent the accumulated reward in the interval [0,t). Then, the Markov reward

model and the possible sample paths of X(t), Y(t), and Z(t) are detailed in Fig. 4.

The expected instantaneous reward rate E[X(t)], the expected accumulated reward

E[Y(t)], and the steady-state expected reward rate E[X(1)] can be computed as

follows [23]:

E X tð Þ½ � ¼
X
i2O

riPi tð Þ;

E Y tð Þ½ � ¼
X
i2O

ri

ðt

0

Pi tð Þ ¼
X
i2O

riLi tð Þ;

and

E X½ � ¼ E X 1ð Þ½ � ¼
X
i2O

ripi:

where pi is the limiting state probability, that is, pi ¼ lim
t!1Pi tð Þ.

The expected accumulated reward until absorption and the distribution X(t) can be
computed by the following expressions:

E Y 1ð Þ½ � ¼
X
i2O

ri

ð1

0

Pi tð Þdt ¼
X
i2B

rizi;

and

P X tð Þ � x½ � ¼
X

ri�x; i2O
Pi tð Þ:

One major drawback of MRM (or CTMC) is the largeness of their state space,

since Markov chain for complex systems can easily reach hundreds, thousands, or

millions of states. SPNs can be used for the specification and automatic generation

of the underlying Markov chain in order to tolerate the state explosion problem

through a more concise and smaller model as a starting point. CTMC underlying the

SPN can then be generated, stored, and solved using efficient and numerically stable

algorithms [22,23,34]. SPNs are composed of places, transitions (timed and imme-

diate), arcs, and tokens. Figure 5 presents a simple SPN that shows the failure/

recovery behavior of a system. The server starts in Up state, indicated by a token in

place Pup. The transition Tfail fires when the server goes down, and then the token in

Pup is removed and a token is deposited in Pdown. Trecv fires when the server has

recovered, then the token in Pdown is removed and a token is deposited in Pup.

Pup

Pdown

TfailTrecv

FIG. 5. SPN example.

10 K. TRIVEDI ET AL.

Author's personal copy
Many extensions of SPNs have been proposed for allowing more concise and

powerful description of Petri net models, such as GSPN. GSPN is a generalization of

SPN by allowing both immediate transitions and timed transitions. To facilitate the

automatic generation of MRMs, reward rates are also defined in term of GSPN.

Thus, GSPNs are extended by introducing reward and guard functions to obtain the

SRNs. For a comparison of GSPN and SRN, the reader should refer to Refs. [35,36].

Some of the most prominent functionalities of SRNs are

l Priorities. This extension is used when more than one transition is enabled at

the same time, where the transition with higher priority is the only one allowed

to fire. Although inhibitor arcs can be used to achieve the same purpose,

priorities make the model simpler.

l Guards. This feature extends the concept of priorities and inhibitor arcs,

providing a powerful means to simplify the graphical representation and to

make SRNs easier to understand, since it allows the designers to use the entire

state-space of the model by adding an enabling expression to a transition.

l Marking-dependent arc multiplicity. This feature provides a way to model

situations where the number of tokens removed (or deposited) from (to) a

place can depend upon the system state.

l Marking-dependent firing rates. This functionality allows the firing rate of a

transition to depend on the current marking of the model.

l Rewards. This feature allows the assignment of reward rates to the marking of

the SRN model. It can be used to obtain not only system performance/avail-

ability measures, but also combined measures of performance and availability.

Petri net-based models have been successfully applied to several types of systems

[37–42] and allow the modeling of parallel, concurrent, asynchronous, and

COMBINING PERFORMANCE AND AVAILABILITYANALYSIS 11

Author's personal copy
non-deterministic behaviors. Many tools for modeling and analysis of Petri nets are

available like TimeNet [43], GreatSPN [44], SHARPE [45], and SPNP [46]. For

review of other Petri net extensions, see Ref. [47].

Although CTMCs provide a useful approach to construct models of systems that

include structural variations and performance levels, the models can be very large

and complex, and the model construction becomes error-prone. A two-level hierar-

chical model utilizing MRMs can alleviate these problems in the combined perfor-

mance and availability analysis. In this hierarchical approach, a sequence of lower

performance models is solved, one for each state of the availability model. The

obtained performance measures become reward rates to be assigned to states of the

upper level MRM availability model. Upper level MRM is then solved to compute

the overall performance measure. Although approximation is involved in this

process, the errors caused by the approximation are generally acceptable in practice.

CTMC/MRM for real complex systems tend to be composed of huge number of

states. Hence, formalisms for a concise description of the models as well as the

automatic conversion into a CTMC/MRM are necessary. GSPN and SRN have been

widely used for this purpose, since they are isomorphic to CTMCs and MRMs,

respectively. In the Petri net-based models, SRN models are more powerful and

more manageable than GSPN models [35,36].
3. Practical Examples

We next review several studies on pure availability and pure performance analysis

as well as composite performance and availability analysis. For some examples, we

detail the SHARPE input files. SHARPE (Symbolic Hierarchical Automated Reli-

ability/Performance Evaluator) [45] is a software package which allows the specifi-

cation and analysis of stochastic models. It supports the following model types:

Markov chains (acyclic, irreducible, and phase type), semi-Markov chains (acyclic

and irreducible), Markov regenerative processes, RBDs, FTs, reliability graphs,

single-chain product form queuing networks, multiple-chain product form queuing

networks, GSPN, SRN, and series–parallel acyclic graphs.
3.1 Pure Reliability/Availability and Pure
Performance Analysis

In this subsection, we describe techniques used in the construction and solution of

pure availability models and pure performance models.

12 K. TRIVEDI ET AL.

Author's personal copy
3.1.1 Two-Board System
Many techniques have been proposed to capture the multistate system availabil-

ity. In Ref. [48], we used three analytic model types (CTMC, SRN, and FT) and

compared the results among them. To show the comparative study, we adopted an

example of two-board system as shown in Fig. 6. The system consists of two boards

(B1 and B2), each of which has a processor (P1 or P2) and a memory (M1 or M2). The

state of each board is (1) both P and M are down, (2) P is working properly but M is

down, (3) M is working properly but P is down, or (4) both P and M are functional.

We assumed that the time to failure of the processor and the memory is exponen-

tially distributed with rates lp and lm, respectively. Common cause failure in which

both the processor and the memory on the same board fail is also taken into account

by assuming exponential distribution with rate lmp.

Figure 8 presents the CTMC reliability model of the two-board system. The states

of the CTMC are represented by a binary vector showing the states of P1, M1, P2, and

M2. Note that 1 represents up state of the device and 0 represents its down state.

Figures 7 and 9 depict the SHARPE input file for the CTMC. First of all, any

character after “*”(asterisk) is considered to be a comment and is ignored for

SHARPE execution. On line 1, format 8 means the number of digits after the

decimal point to be printed in results. On lines 4 through 8, the variables used as

parameters are given values. The failure rates of the processor and the memory (lp
and lm) are set to 1/1000 and 1/2000 failures per hour, respectively. The mean

time to common cause failure, 1/lmp, is 1/3000h. When a group of parameters is

given values, then the block must start with a keyword bind and finishes with the

keyword end.
B1
P1 M1

B2
P2 M2

FIG. 6. Two-board system example.

1 format 8 26 1011 1001 lambda_p

2 27 1011 0011 lambda_p

3 28 1011 1000 lambda_mp

4 bind 29 0111 0110 lambda_m

5 lambda_mp 1/3000 30 0111 0101 lambda_p

6 lambda_p 1/1000 31 0111 0011 lambda_m

7 lambda_m 1/2000 32 0111 0100 lambda_mp

8 end 33 1100 1000 lambda_m

9 34 1100 0100 lambda_p

10 markov PM 35 1100 0000 lambda_mp

11 1111 1110 lambda_m 36 1010 1000 lambda_p

12 1111 1101 lambda_p 37 1010 0010 lambda_p

13 1111 1011 lambda_m 38 0110 0100 lambda_p

14 1111 0111 lambda_p 39 0110 0010 lambda_m

15 1111 0011 lambda_mp 40 1001 1000 lambda_m

16 1111 1100 lambda_mp 41 1001 0001 lambda_p

17 1110 1100 lambda_p 42 0101 0100 lambda_m

18 1110 1010 lambda_m 43 0101 0001 lambda_m

19 1110 0110 lambda_p 44 0011 0010 lambda_m

20 1110 0010 lambda_mp 45 0011 0001 lambda_p

21 1101 1100 lambda_m 46 0011 0000 lambda_mp

22 1101 1001 lambda_m 47 1000 0000 lambda_p

23 1101 0101 lambda_p 48 0100 0000 lambda_m

24 1101 0001 lambda_mp 49 0010 0000 lambda_p

25 1011 1010 lambda_m 50 0001 0000 lambda_m

FIG. 7. SHARPE input for the CTMC example.

COMBINING PERFORMANCE AND AVAILABILITYANALYSIS 13

Author's personal copy
The model specification begins with a model type and a name (see line 10). In this

case, the model type is markov which denotes Markov chain (CTMC) and the name

is PM. SHARPE allows three kinds of Markov chains: irreducible, acyclic, and PH

type. Lines 10 through 50 define the states and state transitions of the Markov chain.

From lines 50 through 68, we define the reward configuration, where for each state

of the CTMC a reward rate is assigned to it. Note that the keyword reward (see line

51 in Fig. 9) denotes that in the next group of lines, SHARPE will assign reward

1111

1011

1101

1110

0111

1100

1010

0110

1001

0101

0011

0010

0100

1000

0001

0000

lmp
lm

lp

lmp

lp

lm

lp

lp

lp

lm

lmp

lm

lmp

lm

lp

lmp

lm

lp

lm
lmp

lm

lp

lmp

l
mp

lp

lm

lp

lm

lm

lp

lp

lp

lp
lm

lm

lm

lm

lp

lp

lm

FIG. 8. CTMC for a two-board system.

14 K. TRIVEDI ET AL.

Author's personal copy
rates to the model states. For the two-board system, we adopted the CTMC model to

compute the expected reward rate at time t for the case that at least one processor and
both of the memories are operational. For that, we assigned the reward rate 1 to the

UP states ((1,1,1,1) (1,1,0,1), and (0,1,1,1)) and 0 to the other states (down states).

From lines 70 through 86, the initial state probabilities are specified. Initial state

probabilities denote the likelihood of a sequence starting in a certain state. On lines

88 through 91, we define a function (func) to compute the expected reward rate at

t¼100 and t¼200. It is important to highlight that the keyword exrt is a built-in

function which gives the expected reward rate at time t. It takes as arguments a

variable t and a Markov model name. The keyword expr says to evaluate an

expression. Finally, line 93 contains the keyword end which means the end of the

input file. The outputs for this example are shown in Fig. 10.

The SRN model for the same two-board system is shown in Fig. 11. Figure 11A

describes the failure behavior of the processor P1 and the memory M1, while

Fig. 11B depicts the failure behavior of the processor P2 and the memory M2.

Tokens in the places M1U and M2U represent that the memories are operational.

50 * Reward configuration: 74 0111 0

51 Reward 75 1100 0

52 1111 1 76 1010 0

53 1110 0 77 0110 0

54 1101 1 78 1001 0

55 1011 0 79 0101 0

56 0111 1 80 0011 0

57 1100 0 81 1000 0

58 1010 0 82 0100 0

59 0110 0 83 0010 0

60 1001 0 84 0001 0

61 0101 0 85 0000 0

62 0011 0 86 end

63 1000 0 87 *Output

64 0100 0 88 func Exp_Reward_Rate_T(t) exrt(t; PM)

65 0010 0 89 loop t,100,200,100

66 0001 0 90 expr Exp_Reward_Rate_T(t)

67 0000 0 91 end

68 end 92

69 * Initial Probabilities: 93 end

70 1111 1

71 1110 0

72 1101 0

73 1011 0

FIG. 9. SHARPE input for the CTMC example (continuation).

COMBINING PERFORMANCE AND AVAILABILITYANALYSIS 15

Author's personal copy
Otherwise they are down. Likewise, tokens in the places P1U and P2U represent that

the processors are operational. Otherwise, they are down. The SHARPE input file

for the SRN model is shown in Fig. 13. From lines 4 through 8, the variables are

given values. Note that the parameter values are the same as the ones used for the

CTMC model. On lines 10 through 16, we define a reward function to compute the

probability that at least one processor and both of the memories are operational. That

is, the places P1U or P2U must have at least one token and the places M1U and M2U

must have exactly two tokens.

t=100.000000

Exp_Reward_Rate_T(t): 8.41314039e-001

t=200.000000

Exp_Reward_Rate_T(t): 7.00480977e-001

FIG. 10. SHARPE output for CTMC example.

M1U

TP1F

P1U

P1F

lp

TM1

M1F

lm

TC1F
lmp

TP2F

P2U

P2F

lp

TM2

M2F

lm

TC2F
lmp

M2U

A B

FIG. 11. SRN for a two-board system.

t=100.000000

ExRwRt (t): 8.41314039e-001

t=200.000000

ExRwRt (t): 7.00480977e-001

FIG. 12. SHARPE output for SRN example.

16 K. TRIVEDI ET AL.

Author's personal copy

1 format 8 35 TP2F ind lambda_p

2 36 end

3 37 * == Immediate Transitions ==

4 bind 38 end

5 lambda_mp 1/3000 39 * == ARC ==

6 lambda_p 1/1000 40 * Input Arcs

7 lambda_m 1/2000 41 P1U TP1F 1

8 end 42 P1U TC1F 1

9 43 M1U TC1F 1

10 func aval() 44 M1U TM1F 1

11 if((#(P1U)+#(P2U)>=1)and(#(M1U)+#(M2U)==2)) 45 P2U TP2F 1

12 1 46 M2U TM2F 1

13 else 47 M2U TC2F 1

14 0 48 P2U TC2F 1

15 end 49 end

16 end 50 * Output Arcs

17 51 TP1F P1F 1

18 srn BS 52 TM1F M1F 1

19 * == PLACE == 53 TC1F M1F 1

20 P6 0 54 TC1F P1F 1

21 P1U 1 55 TP2F P2F 1

22 M1U 1 56 TM2F P6 1

23 P1F 0 57 TC2F P2F 1

24 M1F 0 58 TC2F P6 1

25 P2F 0 59 end

26 P2U 1 60 * Inhibtor Arcs

27 M2U 1 61 end

28 end 62

29 * == Timed Transitions == 63 func ExRwRt(t) srn_exrt(t,BS; aval)

30 TP1F ind lambda_p 64 loop t,100,200,100

31 TC1F ind lambda_mp 65 expr ExRwRt(t)

32 TM1F ind lambda_m 66 end

33 TM2F ind lambda_m 67

34 TC2F ind lambda_mp 68 end

FIG. 13. SHARPE input for the SRN example.

COMBINING PERFORMANCE AND AVAILABILITYANALYSIS 17

Author's personal copy

18 K. TRIVEDI ET AL.

Author's personal copy
On line 18, we begin the specification of model with a keyword srn which means

SRNs and a name BS. The SRN specification is divided into the following basic

blocks: places, timed transitions, immediate transitions, inputs arcs, output arcs, and

inhibitor arcs. Lines 20 through 28 specify the places. Each line contains the name of

a place and the number of token in the place. Lines 30 through 36 comprise the timed

transitions. Each line contains the name of a timed transition followed by the

keyword ind and the value/variable assigned to it. Lines 41 through 49 define

the input arcs. Each line consists of a place name followed by a transition name

and the multiplicity of the arc. Lines 51 through 59 specify the output arcs. Each

line consists of a transition name followed by a place name and the multiplicity of

the arc. Note that the SRN models do not have immediate transitions and inhibitor

arcs. On lines 63 through 66, we define a function to compute the reward rate at time

t¼100 and t¼200. The keyword srn_exrt is a built-in function which computes the

expected reward rate at time t. It takes as arguments a variable t, an SRN model

name, and a reward function, as multiple reward functions can be defined for the

SRN. The outputs for the specified model are presented in Fig. 12. One should note

that the results from the SRN models are identical to those from the CTMC model.

Finally, the multistate FT model considering that at least one processor and both

of the memories are operational is depicted in Fig. 14. The SHARPE input file for

the FT model is shown in Fig. 15. On line 4, we begin the specification of the FT
S3

B2,4

B1,3

B2,3

B1,4

B2,4

FIG. 14. FT for a two-board system.

1 ****t=100 17 *****t=200

2 format 8 18

3 19 mstree BS200

4 mstree BS100 20 basic B1:4 prob(0.6930)

5 basic B1:4 prob(0.8325) 21 basic B1:3 prob(0.1588)

6 basic B1:3 prob(0.0891) 22 basic B2:4 prob(0.6930)

7 basic B2:4 prob(0.8325) 23 basic B2:3 prob(0.1588)

8 basic B2:3 prob(0.0891) 24 or gor321 B2:3 B2:4

9 or gor321 B2:3 B2:4 25 and gand311 B1:4 gor321

10 and gand311 B1:4 gor321 25 and gand312 B1:3 B2:4

11 and gand312 B1:3 B2:4 27 or top:1 gand311 gand312

12 or top:1 gand311 gand312 28 end

13 end 29 echo System Probability

14 echo System Probability 30 expr sysprob(BS200, top:1)

15 expr sysprob(BS100, top:1) 31

16 32 end

FIG. 15. SHARPE input for the multistate FT example.

COMBINING PERFORMANCE AND AVAILABILITYANALYSIS 19

Author's personal copy
with a keyword mstree which means multistate FT and a name BS100. On lines 5

through 8, we define the events. An event begins with the keyword basic.
For example, line 5 defines the event B1:4 and assigns to it a transient probability

of being in the component state pB1,4
(t), where B1,4 denotes the board B1 is in state 4.

Each board is considered as a component with four states as stated above. The

probability is obtained by solving the Markov chain in Fig. 16. The states of the

CTMC are represented by a binary vector showing the states of P (processor) and M

(memory), where 1 denotes up and 0 denotes down for each device. One should note
that the probability is computed at t¼100 but can be assigned with a variable value

of t as a parameter. From lines 9 to 12, the structure of the multistate FT is defined.

For instance, on line 9, the gate or is defined followed by the name gor321 and its

inputs B2:3 and B2:4. On line 15, the system (failure) probability is computed. Note

that for the second part of the specification (from lines 17 through 30), we consider

t¼200h. The results are depicted in Fig. 17. The solutions of the three models

(CTMC, SRN, and FT) yield same results within numerical accuracy [48]. Note that

the 4-state CTMC of a single board can also be in the input file and its state

probabilities at time t can be directly passed onto the multistate FT, making a

much better use of the capability of SHARPE.

11

10

01

00

lm

lp
lm

lp

lmp

FIG. 16. CTMC model for a single board.

System Probability
sysprob(ex100, top:1) : 8.41407750e-001

System Probability
sysprob(ex200, top:1) : 7.00345800e-001

FIG. 17. SHARPE output for the multistate FT example.

20 K. TRIVEDI ET AL.

Author's personal copy
3.1.2 VAXcluster System
Availability evaluation of a VAXcluster system using RBD is shown in Ref. [29].

This system consists of two or more VAX processors, a star coupler, one or more

storage controllers (HSCs), and a set of disks (see Fig. 18). The RBD of a

VAXcluster configuration is presented in Fig. 19 with Np processors, Nh HSCs,

and Nd disks. The system is working properly if at least one component of each set of

devices is working properly. Since RBDs are easy to construct and solve, it is

necessary to assume failure independence between system components and inde-

pendent repair for components in order to solve the RBD (without generating the

underlying state space). A detailed model using SRN can be found in Ref. [49], and a

hierarchical model can be found in Ref. [41].

Figure 20 depicts the SHARPE input file for the VAXcluster system. On line 4,

we begin the specification of the model with a keyword block which means RBD

.

.

.

VAX

VAX

VAX

HSC

HSC

Disk

Disk

Star
couple

.

.

.

.

.

.

FIG. 18. VAXcluster system.

...

...
...

HSC

HSC

Disk

Disk

VAX

VAX

VAX

FIG. 19. Reliability block diagram for VAXcluster system.

COMBINING PERFORMANCE AND AVAILABILITYANALYSIS 21

Author's personal copy
and a name Vax. From lines 4 through 7, we define the blocks. Each line contains the

keyword comp, the name of the component type, and a built-in function exp. For
example, on line 5, the failure rate of each component of type B is 1/2000h. We

could have used other built-in distributions such as Weibull. Lines 8 through 11

define the RBD structure. Each line consists of one of the keywords series or

parallel, the name of the structure, and either the components or other structure

being combined. Line 8 combines three components of type A in parallel. The name

of this structure is parallel2. From lines 15 through 18, we compute the reliability of

VAXcluster system for various values of t. Note that a loop is used to print the result,
where t ranges from 100 to 1000 by using an increment of 100. Figure 21 shows the

results. The system reliability decreases as t increases. We could also compute

steady-state or instantaneous availability.

1 format 8

2 factor on

3

4 block Vax

5 comp B exp(1/2000)

6 comp A exp(1/3000)

7 comp C exp(1/1000)

8 parallel parallel2 A A A

9 parallel parallel3 B B

10 parallel parallel5 C C C C

11 series serie0 parallel2 parallel3 parallel5

12 End

13

14 *output

15 func Reliability(t) 1-tvalue(t;Vax)

16 loop t,100,1000,100

17 expr Reliability(t)

18 End

19

20 End

FIG. 20. SHARPE input for the VAXcluster system.

22 K. TRIVEDI ET AL.

Author's personal copy
3.1.3 Telecommunication Switching System
Figure 22 presents the performance model of a telecommunication switching

system by CTMC [50]. This system is composed of n trunks with an infinite caller

population. We assumed call holding times are exponentially distributed with rate

mh, and the call arrival process is Poison with rate la. This model can be represented

asM/M/n/n queuing system. The blocking probability of new calls due to the lack of

available trunks is computed by solving the CTMC. The blocking probability is

given by pn which is the probability that the CTMC is in state n in the steady state.

As mentioned before, pure performance model does not consider the performance

degradation caused by failures of system components.

Figure 23 shows the SHARPE input file for the telecommunication switching

system. From lines 4 through 7, we assign values to the input parameters.

The parameters are set to la¼5s�1 and mh¼0.3s�1. Lines 8 through 17 specify the

t=100.000000 t=600.000000

Reliability(t): 9.97504467e-001 Reliability(t): 8.88841615e-001

t=200.000000 t=700.000000

Reliability(t): 9.89608644e-001 Reliability(t): 8.46468134e-001

t=300.000000 t=800.000000

Reliability(t): 9.75331528e-001 Reliability(t): 7.98972146e-001

t=400.000000 t=900.000000

Reliability(t): 9.53857476e-001 Reliability(t): 7.47706609e-001

t=500.000000 t=1000.000000

Reliability(t): 9.24916431e-001 Reliability(t): 6.94061227e-001

FIG. 21. SHARPE output for RBD example.

0 1 2 N-1 n...

la

mh 2mh 3mh (n-1)mh nmh

lalala la

FIG. 22. Performance model of telecommunication switching system.

COMBINING PERFORMANCE AND AVAILABILITYANALYSIS 23

Author's personal copy
Markov reward model. Note that the Markov model is specified using a loop. This

functionality is extremely powerful, since it allows creating complex models easily.

As the blocking probability is given by pn, the state n is assigned a reward rate 1 (see
line 15). By default, the other states are assigned reward rate 0. On lines 19 through

21, the blocking probability is computed with the number of trunks varying from 1 to

10. The outputs are shown in Fig. 24. The outputs can be easily plotted by SHARPE

as well.
3.2 Composite Performance and Availability Analysis

In the next subsections, we describe some examples of composite performance

and availability analysis.

1 format 8

2

3 bind

4 mu_h 0.03

5 lambda_a 0.5

6 End

7

8 markov TeleSys(n)

9 loop i,0,n

10 $(i) $(i+1) lambda_a

11 $(i+1) $(i) (i+1)*mu_h

12 End

13 * Reward configuration:

14 Reward

15 $(n) 1

16 End

17 End

18

19 loop n,1,10,1

20 expr exrss(TeleSys; n)

21 End

30

FIG. 23. SHARPE input for the performance model.

24 K. TRIVEDI ET AL.

Author's personal copy
3.2.1 Multiprocessor Systems
In Ref. [3], we discussed the use of MRM for combining performance and

availability analysis of fault tolerant systems. Figure 25 presents the availability

model of a multiprocessor system. This system is composed of n processors with

covered and not covered failures. In covered failure case (whose probability is

represented by c), the system must be reconfigured after the failure with a small

delay (mean 1/d). On the other hand, not covered failure (the probability of this case
is 1�c) denotes that the system must be rebooted with rate b after the failure. We

assumed the system is down during the reconfiguration states (xn, xn�1,. . .,x2) and
reboot states (yn, yn�1,. . .,y2). In this example, we were interested in computing

unavailability and the normalized throughput loss (NTL), which are both instances

of steady-state expected reward rate E[X].

n=1.000000 n=6.000000

exrss(TeleSys; n): 1.06458481e-001 exrss(TeleSys; n): 2.57723209e-001

n=2.000000 n=7.000000

exrss(TeleSys; n): 1.49638871e-001 exrss(TeleSys; n): 2.69324797e-001

n=3.000000 n=8.000000

exrss(TeleSys; n): 1.86234905e-001 exrss(TeleSys; n): 2.75172317e-001

n=4.000000 n=9.000000

exrss(TeleSys; n): 2.16355227e-001 exrss(TeleSys; n): 2.75552423e-001

n=5.000000 n=10.000000

exrss(TeleSys; n): 2.40131418e-001 exrss(TeleSys; n): 2.70812187e-001

FIG. 24. SHARPE output for the performance model.

xn

n n-1 n-2

xn-1

yn yn-1

1 0...
ngfc

(1-c)ngf
(1-c)(n-1)gf

(n-1)gfcdr
dr

br
br

tr tr

tr

gf

FIG. 25. Markov chain of a multiprocessor system.

COMBINING PERFORMANCE AND AVAILABILITYANALYSIS 25

Author's personal copy
Solving for the steady-state probabilities, we have [23]:

pn�i ¼ n!

n� ið Þ! g=tð Þipn;

pxn�i
¼ n!

n� ið Þ!
g n� ið Þc

d
g=tð Þipn;

26 K. TRIVEDI ET AL.

Author's personal copy
pyn�i
¼ n!

n� ið Þ!
g n� ið Þ 1� cð Þ

b
g=tð Þipn;

i ¼ 0; 1; 2; . . . ; n� 2;

where

pn ¼

Xn
i¼0

g=tð Þi n!

n� ið Þ!

þ
Xn�2

i¼0

g=tð Þi g n� ið Þcn!
d n� ið Þ!

þ
Xn�2

i¼0

g=tð Þi g n� ið Þ 1� cð Þn!
b n� ið Þ!

2
66666666664

3
77777777775

�1

:

The unavailability of the system was computed by assigning a reward rate 1 to all

down states (xn, xn�1,. . .,yn, yn�1, and 0) and 0 to all the up states (n, n�1,. . .,1).
Thus,

Us ¼
X
i2Srb

pi þ
X
i2Srp

pi þ
X
i2Se

pi

whereSrb¼{yn�1|i¼0,1,. . .n�2}, Srb¼{xn�1|i¼0,1,. . .n�2}, and Se¼{0}.

Figure 27 depicts SHARPE file to compute steady-state unavailability for the

multiprocessor system. Lines 4 through 11 assign the values to the input parameters.

The number of processors, n, is 4. The failure rate gf of a processor is 1/6000 failures
per hours. The mean times to reboot, 1/br, and reconfiguration, 1/dr, are set to be

5min and 10s, respectively. The mean time to repair a processor is 1h. From lines 13

through 44, we define the Markov reward model. Note that the up states are assigned

reward rate 0 and the down states are assigned reward rate 1 (see lines 32 thor-

ough 44). From lines 47 through 49, we compute the steady-state system unavail-

ability. Figure 26 presents the output for the Markov reward model.

To obtain the NTL representing the fraction of the jobs rejected, the up states were

assigned with reward rate of a task being rejected caused by the fullness of the
SS System Unavailability

SU: 4.53626015e-006

FIG. 26. SHARPE output for multiprocessor system.

1 format 8 27 y2 1 beta_r

2 28 1 2 tau_r

3 29 1 0 gamma_f

4 bind 30 0 1 tau_r

5 tau_r 1 31 * Reward configuration defined:

6 gamma_f 1/6000 32 Reward

7 beta_r 12 33 x4 1

8 delta_r 360 34 y4 1

9 c 0.95 35 4 0

10 n 4 36 3 0

11 end 37 x3 1

12 38 y3 1

13 markov multProc 39 2 0

14 x4 3 delta_r 40 x2 1

15 y4 3 beta_r 41 y2 1

16 4 x4 n*gamma_f*c 42 1 0

17 4 y4 n*gamma_f*(1-c) 43 0 1

18 3 4 tau_r 44 end

19 3 x3 (n-1)*gamma_f*c 45 end

20 3 y3(n-1)*gamma_f*(1-c) 46

21 x3 2 delta_r 47 var SU exrss(multProc)

22 y3 2 beta_r 48 echo SS System Unavailability

23 2 x2 (n-2)*gamma_f*c 49 expr SU

24 2 y2 (n-2)*gamma_f*(1-c) 50

25 2 3 tau_r 51 end

26 x2 1 delta_r 52

FIG. 27. SHARPE input to compute the unavailability of the multiprocessor system.

COMBINING PERFORMANCE AND AVAILABILITYANALYSIS 27

Author's personal copy
buffers. Since arriving jobs are always rejected when the system is unavailable,

the down states are assigned with reward rate 1. The computation of job loss

probability due to full buffers can be carried out using a queuing model [23] or

can be based on measurements. For this example, we assumed an M/M/i/b queuing

model (see Fig. 28).

The Markov chain for an M/M/i/b queuing model is shown in Fig. 29. The state

indices denote the number of jobs in the system. We assume that jobs arriving to the

system form a Poisson process with rate l and that the service requirements of jobs

are independent, identically distributed according to an exponential distribution with

mean 1/m. We also assume that there is a limited number b of buffers available for

m

m

i processors
...

...

Poisson
arrival

stream

b

FIG. 28. Queuing system for the multiprocessor system.

0 1 2 i...

li

ms 2ms
3ms ims

b-1...

ims ims

b

ims

li li li li li li

FIG. 29. Performance model for the multiprocessor system.

28 K. TRIVEDI ET AL.

Author's personal copy
queuing the jobs. Tasks arriving when all the buffers are full are rejected. As

explained earlier, to compute the NTL, we assign reward rates of a task being

rejected to all the up state of the availability model by solving a sequence of

lower-level performance models. Besides, we assign a reward rate 1 to all the

down states. The task will be rejected whenever b tasks are in the system. Therefore,

the NTL is given by the probability qb(i) that the CTMC (see Fig. 29) is in state b [5]:

qb ið Þ ¼

rb

ib�ii!

Xi�1

j¼0

rj

j!
þ
Xb
j¼i

rj

ij�ii!

2
4

3
5
�1

; b � i

rb

b!

Xb
j¼0

rj

j!

2
4

3
5
�1

; b < i

8>>>>>>><
>>>>>>>:

where r¼l/m.
Figures 30 and 31 present the SHARPE input file to compute the NTL. Lines 4

through 13 define the input parameters. The parameter values for the high-level

availability model are the same as the ones presented before to compute the steady-

state unavailability. For the performance models, we assumed the jobs arrive at

lj¼200 jobs per second. Each job has a service rate of ms¼100 jobs per second. The

number of buffer is b¼3. Thus,

1 format 8 35 markov perfMultProc3

2 36 0 1 lambda_j

3 37 1 2 lambda_j

4 bind 38 1 0 mu_s

5 lambda_j 200 39 2 3 lambda_j

6 tau_r 1 40 2 1 2*mu_s

7 gamma_f 1/6000 41 3 4 lambda_j

8 beta_r 12 42 3 2 3*mu_s

9 mu_s 100 43 4 5lambda_j

10 delta_r 360 44 4 3 3*mu_s

11 c 0.95 45 5 6 lambda_j

12 n 4 46 5 4 3*mu_s

13 end 47 6 5 3*mu_s

14 48 end

15 markov perfMultProc4 49 end

16 0 1 lambda_j 50

17 1 2 lambda_j 51 func R3()\

18 1 0 mu_s 52 prob(perfMultProc3, 6)

19 2 3 lambda_j 53

20 2 1 2*mu_s 54

21 3 4 lambda_j 55 markov perfMultProc2

22 3 2 3*mu_s 56 0 1 lambda_j

23 4 5 lambda_j 57 1 0 mu_s

24 4 3 4*mu_s 58 1 2 lambda_j

25 5 6 lambda_j 59 2 1 2*mu_s

26 5 4 4*mu_s 60 2 3 lambda_j

27 6 7 lambda_j 61 3 2 2*mu_s

28 6 5 4*mu_s 62 3 4 lambda_j

29 7 6 4*mu_s 63 4 3 2*mu_s

30 end 64 4 5 lambda_j

31 end 65 5 4 2*mu_s

32 66 end

33 func R4()\ 67 end

34 prob(perfMultProc4, 7) 68

FIG. 30. SHARPE input for the multiprocessor system.

COMBINING PERFORMANCE AND AVAILABILITYANALYSIS 29

Author's personal copy

69 func R2()\ 98 2 x2 (n-2)*gamma_f*c

70 prob(perfMultProc2, 5) 99 2 y2 (n-2)*gamma_f*(1-c)

71 100 2 3 tau_r

72 markov perfMultProc1 101 x2 1 delta_r

73 0 1 lambda_j 102 y2 1 beta_r

74 1 2 lambda_j 103 1 2 tau_r

75 1 0 mu_s 104 1 0 gamma_f

76 2 3 lambda_j 105 0 1 tau_r

77 2 1 mu_s 106 * Reward configuration defined:

78 3 4 lambda_j 107 Reward

79 3 2 mu_s 108 x4 1

80 4 3 mu_s 109 y4 1

81 end 110 4 R4()

82 end 111 3 R3()

83 112 x3 1

84 func R1()\ 113 y3 1

85 prob(perfMultProc1, 4) 114 2 R2()

86 115 x2 1

87 116 y2 1

88 markov multProc 117 1 R1()

89 x4 3 delta_r 118 0 1

90 y4 3 beta_r 119 end

91 4 x4 n*gamma_f*c 120 end

92 4 y4 n*gamma_f*(1-c) 121

93 3 4 tau_r 122 var NTL exrss(multProc)

94 3 x3 (n-1)*gamma_f*c 123 echo NTL for the Multiprocessor System.

95 3 y3 (n-1)*gamma_f*(1-c) 124 expr NTL

96 x3 2 delta_r 125

97 y3 2 beta_r 126 end

FIG. 31. SHARPE input for the multiprocessor system (continuation).

30 K. TRIVEDI ET AL.

Author's personal copy
NTL ¼
X
i2Sp

qb ið Þ þ Us

where Sp¼{i|1�i�n}.

COMBINING PERFORMANCE AND AVAILABILITYANALYSIS 31

Author's personal copy
Lines 15 through 105 define the performance models which are solved for each up

state of the availability model. For instance, from lines 15 through 31, we define the

performance model when 4 processors are operational. This performance model is

solved to compute the job loss probability due to full buffers (function on lines 33

through 34). The function computes the probability that the CTMC is in state b. The
result is passed as reward rates to the availability model (see line 110). This

procedure is carried out for all the up states. Lines 122 through 124 compute the

NTL for the multiprocessor system. Figure 32 shows the output for this model. Note

that this model specification can be easily modified to consider different number of

processors and different number of buffer using loops in the specification of CTMC

as presented before for the telecommunication switching case.
3.2.2 Wireless Communication Network System
In Ref. [2], Ma et al. presented two techniques for combining performance and

availability analysis in a wireless communication network system. The two model-

ing techniques used are an exact composite model and a hierarchical performability

model. Figure 33 presents a monolithic CTMC model for a system with channel

failure and repair. We assumed there are C idle channels and g guard channels. Note
that the guard channels are reserved channels which are used by handoff calls only,

since the dropping of a handoff call is more severe than the blocking of a new call.

Interarrival times for the new and handoff calls are exponentially distributed with

respective rates ln and lh
i . The departure of call due to termination or due to an

ongoing call crossing a cell boundary is exponentially distributed with respective

rates ld and lh
0. The channel failure and repair times are exponentially distributed

with rates lf and mr, respectively. For the sake of simplicity, we assume lt¼lnþlh
i ,

l0¼ldþlh
0, a¼C�g, b¼C�gþ1, and q¼C�1.

Since the exact approach (see Fig. 33) generally faces largeness and stiffness

problems, we advocate the use of hierarchical approaches. The performability model

composed of two-level MRMs for the wireless communication network is shown in

Fig. 34. The upper level model depicts the failure and repair behavior of the system

(see Fig. 34A). The lower-level models describe the performance aspects of the

system (see Fig. 34B and C). For each state i (C,. . .,C�g�1) on the upper level
NTL for the Multiprocessor System.

NTL: 1.10182931e-002

FIG. 32. SHARPE output for the multiprocessor system.

0 1 C-g 0

0 C

C-1 0 C 0... ...

1 C-1C-g... ...

0 C-1 1 C-1

lt

l0

lf

lf

lt lt li
t

Cl0
ql0

ql0

bl0

bl0

al0

al f

al0

2l0

2l0

mr

mr

mrmrmr

mr

mr

mr

mr

mrlf

lf

lf

bl f
lt l t li

t

li
t

li
t

li
t

......

(C-1)lf

li
t li

t

l0

l0

alf

2l f qlf Clf

11110

00

FIG. 33. Monolithic CTMC model for a wireless system with channel failure and repair.

32 K. TRIVEDI ET AL.

Author's personal copy
model, the lower-level performance model described in Fig. 34B is solved to

compute the dropping probability and blocking probability. These measures are

then used as reward rates in the upper level model. Likewise, for each state i
(C�g,. . .,1) on the availability model, the lower-level performance model described

in Fig. 34C is solved, and the results are used as reward rates to the availability

model. Note that the performance model in Fig. 34B represents the arrival of either

new or handoff calls, while the performance model in Fig. 34C represents only

handoff call arrival. This approach is an approximation of the exact model by

assuming that in each state of the upper level, the lower level reaches steady state.

Even though an approximation is involved in this process, the errors caused by the

approximation are acceptable. Thus, the use of hierarchical models provides a good

alternative for combining performance and availability analysis.
3.2.3 Job Completion Time
Yet another example of combined performance and reliability analysis is compu-

tation of the job completion time on a system subject to component failure and

repair. The distribution of the job completion time on a computer system considering

0 1 N-g-1...

lt

l0

lt lt lt

3l0
(N-g-1)l0

Upper level availability model

c C-1 C-2 1 0...

Clf

mr
mr mr mr mr

Lower level performance model for arrival of
either new or handoff call

(C-1)l f
2l f

N-g N-1 N...

li
t

li
t li

t li
t

Nl0
(N-g+1)l0 (N-2)l0

Lower level performance model for only
handoff call arrival

2

2l0

N-2

(N-1)l0

(C-2)l f l f
A

B

C

FIG. 34. Upper- and lower-level models for a wireless system.

2(prs)

3(pri)1(prs)

Q21(t)

Q13(t)

Q23(t)

Q31(t)

Q12(t)

FIG. 35. Three-state CPU model.

COMBINING PERFORMANCE AND AVAILABILITYANALYSIS 33

Author's personal copy
CPU failure and repair was originally studied in Ref. [51]. The CPU or the server

model used in the study was a three-state SMP, and the job completion time was

analyzed in a general manner [29,52]. Figure 35 shows the SMP for the CPU model

where state 1 represents the server up state; state 2 is the state where the server is

34 K. TRIVEDI ET AL.

Author's personal copy
recovering from a nonfatal failure; and state 3 is the state where the server is

recovering from a fatal failure.

The state 1 and the state 2 are categorized as pre-emptive resume (prs) states in

which the job execution is resumed from the interrupted point. On the other hand,

the state 3 is categorized as pre-emptive repeat identical (pri) state in which the job

execution is restarted from the beginning. A job that started execution when the

server is in state 1 may encounter a nonfatal error that leads to the server state change

from 1 to 2. The job execution also faces a fatal error that causes the server state

change from 1 to 3. Both of nonfatal error and fatal error are repairable and their

times to recovery follow general distribution G2(t) and G3(t), respectively. Assum-

ing that failures are exponentially distributed with rate l and each failure is either

nonfatal with probability pnf or fatal with probability pf¼1�pnf, the SMP kernel

distributions are given by following expressions.

Q12 tð Þ ¼ pnf � 1� e�lt� �

Q13 tð Þ ¼ pf � 1� e�lt� �

Q21 tð Þ ¼
ðt

0

e�lpft d

dt
G2 tð Þdt

Q23 tð Þ ¼ 1� e�lpft
� ��

ðt

0

l�pf �e�lpft d

dt
G2 tð Þdt

Q31 tð Þ ¼ G3 tð Þ
Using the analysis method developed in Ref. [52] to the SMP model, we can

obtain the Laplace–Stieltjes transforms (LSTs) of the job completion time

distribution F1
�(s,x) for fixed work amount x:

F�
1 s; xð Þ ¼ e�t sð Þx

1� lpf
sþlpf

� 1� e�t sð Þx½ ��G�
3 sð Þ

t sð Þ ¼ sþ l 1� pnf �Q�
21 sð Þ� �

where Q21
� (s) and G3

�(s) are the LSTs of Q21(t) and G3(t).
Then LST can be numerically inverted, or by taking derivatives expected

completion time determined.

COMBINING PERFORMANCE AND AVAILABILITYANALYSIS 35

Author's personal copy
4. Conclusions

As a result of the proliferation and complexity of computer systems, the use of

composite performance and availability analysis has become an important method to

analyze degradable systems. Pure performance evaluation of a system tends to be

optimistic since it ignores the failure–repair behavior of the system. On the other

hand, pure availability analysis tends to be conservative, since performance con-

siderations are not properly taken into account. In order to understand and predict

the behavior of these systems, this chapter introduced the main techniques used in

model construction and solution of composite performance and availability analysis,

such as exact composite approach and hierarchical modeling approaches. We have

also shown the basics of analytic models which are useful to compute availability

and performance metrics by themselves. To show the applicability of these methods,

practical examples have been detailed using the SHARPE software package.

References

[1] G. Ciardo, R. Marie, B. Sericola, K.S. Trivedi, Performability analysis using semi-Markov reward

processes, IEEE Trans. Comput. 39 (10) (1990) 1251–1264.

[2] Y. Ma, J. Han, K. Trivedi, Composite performance & availability analysis of wireless communica-

tion networks, IEEE Trans. Veh. Technol. 50 (5) (2001) 1216–1223.

[3] K.S. Trivedi, J.K. Muppala, S.P. Woolet, B.R. Haverkort, Composite performance and dependability

analysis, Perform. Eval. 14 (3–4) (1992) 197–215.

[4] R.A. Sahner, K.S. Trivedi, A. Puliafito, Performance and Reliability Analysis of Computer Systems:

An Example-Based Approach Using the SHARPE Software Package, Kluwer Academic Publishers,

Dordrecht/Boston/London, 1996.

[5] R.M. Smith, K.S. Trivedi, A.V. Ramesh, Performability analysis: measures, an algorithm, and a case

study, IEEE Trans. Comput. 37 (4) (1988) 406–417.

[6] J.K. Muppala, S.P. Woolet, K.S. Trivedi, Real-time systems performance in the presence of failures,

IEEE Comput. 24 (1991) 37–47.

[7] Y. Cao, H. Sun, K.S. Trivedi, Performability analysis of TDMA cellular systems, International

Conference on the Performance and QoS of Next Generation Networking, P&QNet2000, Nagoya,

Japan, 2000.

[8] R. Ghosh, K.S. Trivedi, V.K. Naik, D. Kim, End-to-end performability analysis for infrastructure-as-

a-service cloud: An interacting stochastic models approach, Proceedings of the 16th IEEE Pacific

Rim International Symposium on Dependable Computing (PRDC), 2010, pp. 125–132.

[9] S. Ramani, K. Goseva-Popstojanova, K.S. Trivedi, A framework for performability modeling of

messaging services in distributed systems, Proceedings of the 8th IEEE International Conference on

Engineering of Complex Computer Systems (ICECCS 02), Greenbelt, MD, pp.25–34, 2002.

[10] N. Lopez-Benitez, K.S. Trivedi, Multiprocessor performability analysis, IEEE Trans. Reliab. 42 (4)

(1993) 579–587.

[11] K.S. Trivedi, X. Ma, S. Dharmaraja, Performability modeling of wireless communication systems,

Int. J. Commun. Syst. 16 (6) (2003) 561–577.

36 K. TRIVEDI ET AL.

Author's personal copy
[12] M. Lanus, L. Yin, K.S. Trivedi, Hierarchical composition and aggregation of state-based availability

and performability models, IEEE Trans. Reliab. 52 (1) (2003) 44–52.

[13] D.Wang, W. Xie, K.S. Trivedi, Performability analysis of clustered systems with rejuvenation under

varying workload, Perform. Eval. 64 (3) (2007) 247–265.

[14] B. Haverkort, R. Marie, G. Rubino, K.S. Trivedi, Performability Modeling Tools and Techniques,

John Wiley & Sons, Chichester, England, 2001.

[15] M.D. Beaudry, Performance-related reliability measures for computing systems, IEEE Trans.

Comput. C-27 (Jun. 1978) 540–547.

[16] J.F. Meyer, On evaluating the performability of degradable computing systems, IEEE Trans.

Comput. 29 (8) (Aug. 1980) 720–731.

[17] K.S. Trivedi, D. Wang, D.J. Hunt, A. Rindos, W.E. Smith, B. Vashaw, Availability modeling of SIP

protocol on IBMWebSphere, Proceeding Pacific RimDependability Conference, 2008, pp. 323–330.

[18] K.S. Trivedi, D. Wang, J. Hunt, Computing the number of calls dropped due to failures, Proceedings

of the IEEE International Symposium on Software, Reliability Engineering, 2010, pp. 11–20.

[19] A. Bobbio, K.S. Trivedi, Computing cumulative measures of stiff Markov chains using aggregation,

IEEE Trans. Comput. 39 (Oct. 1990) 1291–1298.

[20] M. Malhotra, J.K. Muppala, K.S. Trivedi, Stiffness-tolerant methods for transient analysis of stiff

Markov chains, Microelectron Reliab. 34 (11) (1994) 1825–1841.

[21] F. Longo, R. Ghosh, V.K. Naik, K.S. Trivedi, A scalable availability model for Infrastructure-as-a-

Service cloud, IEEE/IFIP DSN, 2011.

[22] G. Bolch, S. Greiner, H. Meer, K.S. Trivedi, Queueing Networks and Markov Chains: Modeling and

Performance Evaluation with Computer Science Applications, Wiley Interscience, New York, NY,

1998.

[23] K.S. Trivedi, Probability and Statistics with Reliability, Queuing, and Computer Science Applica-

tions, second ed., John Wiley and Sons, New York, 2001.

[24] D. Logothesis, K.S. Trivedi, A. Puliato, Markov regenerative models, Proceedings of the Interna-

tional Computer Performance and Dependability Symposium, Erlangen, Germany, 1995,

pp. 134–143.

[25] B.R. Haverkort, Approximate performability and dependability analysing using generalized sto-

chastic Petri nets, Perform. Eval. 18 (1993) 61–78.

[26] V. Mainkar, K.S. Trivedi, Fixed point iteration using stochastic reward nets, Proceedings of the 6th

International Workshop on Petri Nets and Performance Models (PNPM), Durham, USA, pp. 21–30,

1995.

[27] ITU-T Recommendation E.800. Terms and definitions related to quality of service and network

performance including dependability. http://wapiti.telecom-lille1.eu/commun/ens/peda/options/ST/

RIO/pub/exposes/exposesrio2008-ttnfa2009/Belhachemi-Arab/files/IUT-T%20E800.pdf. Accessed

18 May 2011.

[28] M. Grottke, K.S. Trivedi, Fighting bugs: remove, retry, replicate and rejuvenate, IEEE Comput. 40

(2) (2007) 107–109.

[29] A. Sathaye, S. Ramani, K.S. Trivedi, Availability models in practice, Proceedings of the Interna-

tional Workshop on Fault-Tolerant Control and Computing (FTCC-1), 2000.

[30] X. Zang, D. Wang, H. Sun, K.S. Trivedi, A BDD-based algorithm for analysis of multistate systems

with multistate components, IEEE Trans. Comput. 52 (12) (Dec. 2003) 1608–1618.

[31] D. Wang, K. Trivedi, T. Sharma, A. Ramesh, D. Twigg, L. Nguyen, Y. Liu, A new reliability

estimation method for large systems, 2000 The Boeing Company patent application pending.

[32] M. Malhotra, K.S. Trivedi, Power-hierarchy of dependability-model types, IEEE Trans. Reliab. 43

(3) (1994) 34–42.

http://wapiti.telecom-lille1.eu/commun/ens/peda/options/ST/RIO/pub/exposes/exposesrio2008-ttnfa2009/Belhachemi-Arab/files/IUT-T%20E800.pdf
http://wapiti.telecom-lille1.eu/commun/ens/peda/options/ST/RIO/pub/exposes/exposesrio2008-ttnfa2009/Belhachemi-Arab/files/IUT-T%20E800.pdf

COMBINING PERFORMANCE AND AVAILABILITYANALYSIS 37

Author's personal copy
[33] S.S. Gokhale, M.R. Lyu, K.S. Trivedi, Analysis of software fault removal policies using a

non-homogeneous continuous time Markov chain, Softw. Qual. J. 12 (3) (2004) 211–230.

[34] W.J. Stewart, Probability, Markov Chains, Queues, and Simulation, Princeton University Press,

USA, 2009.

[35] M. Malhotra, K. Trivedi, Dependability modeling using Petri nets, IEEE Trans. Reliab. 44 (3) (1995)

428–440.

[36] K. Trivedi, G. Ciardo, M. Malhutra, R. Sahner, Dependability and performability analysis,

in: Donatiello Lorenzo, Nelson Randolf (Eds.), Performance Evaluation of Computer and Commu-

nication Systems, Springer-Verlag, NY, USA, 1993.

[37] G. Ciardo, J. Muppala, K.S. Trivedi, Analyzing concurrent and fault-tolerant software using

stochastic Petri nets, J. Parallel Distrib. Comput. 15 (1992) 255–269.

[38] M. Balakrishnan, K.S. Trivedi, Stochastic Petri nets for the reliability analysis of communication

network applications with alternate-routing, Reliab. Eng. Syst. Safety 52 (3) (1996) 243–259 special

issue on Reliability and Safety Analysis of Dynamic Process Systems.

[39] J.B. Dugan, K.S. Trivedi, V. Nicola, R. Geist, Extended stochastic Petri nets: applications and

analysis, Proceeding Performance ’84, North-Holland, Amsterdam, pp. 507–519, 1985.

[40] K.S. Trivedi, Sun Hairong, Stochastic Petri nets and their applications to performance analysis of

computer networks, Proceedings of the International Conference on Operational Research, 1998.

[41] O. Ibe, R. Howe, K.S. Trivedi, Approximate availability analysis of VAXCluster systems, IEEE

Trans. Reliab. 38 (1) (Apr. 1989) 146–152.

[42] R. Fricks, K.S. Trivedi, Modeling failure dependencies in reliability analysis using stochastic Petri

nets, Proceedings of the European Simulation Multi-conference (ESM ’97), Istanbul, 1997.

[43] R. German, C. Kelling, A. Zimmermann, G. Hommel, TimeNET—a toolkit for evaluating

non-Markovian stochastic Petri nets, Perform. Eval. 24 (1995) 69–87.

[44] G. Chiola, G. Franceschinis, R. Gaeta, M. Ribaudo, GreatSPN 1.7: graphical editor and analyzer for

timed and stochastic Petri nets, Perform. Eval. 24 (Nov. 1995) 47–68.

[45] K.S. Trivedi, R. Sahner, SHARPE at the age of twenty two, SIGMETRICS Perform. Eval. Rev. 36

(4) (2009) 52–57.

[46] C. Hirel, B. Tuffin, K.S. Trivedi, SPNP: stochastic Petri nets. Version 6.0, Lect. Notes Comput. Sci.

1786 (2000) 354–357.

[47] A. Bobbio, A. Puliafito, M. Telek, K.S. Trivedi, Recent developments in stochastic Petri nets,

J. Circuits Syst. Comp. 8 (1) (Feb. 1998) 119–158.

[48] K.S. Trivedi, D. Kim, X. Yin, Multi-state availability modeling in practice, in: A. Lisnianski,

I. Frenkel (Eds.), Recent Advances in System Reliability: Signature, Multi-state Systems and

Statistical Inference, Springer, New York, 2011.

[49] J.K. Muppala, A. Sathaye, R. Howe, K.S. Trivedi, Dependability modeling of a heterogeneous

VAXcluster system using stochastic reward nets, in: D. Avresky (Ed.), Hardware and Software Fault

Tolerance in Parallel Computing Systems, Ellis Horwood Ltd, NJ, USA, 1992, pp. 33–59.

[50] Y. Liu, K.S. Trivedi, Survivability quantification: the analytical modeling approach, International J.

Performability Eng. (2006) 29–44.

[51] X. Castillo, D.P. Siewiorek, A performance-reliability model for computing systems, Proceedings of

the FTCS-10, Silver Spring, MD, IEEE Computer Society, 1980, pp. 187–192.

[52] P. Chimento, K. Trivedi, The completion time of programs on processors subject to failure and

repair, IEEE Trans. Comput. 42 (10) (1993) 1184–1194.

38 K. TRIVEDI ET AL.

Author's personal copy
About the Author

Kishor S. Trivedi holds the Hudson Chair in the Department of Electrical and Computer Engineering at

Duke University, Durham, NC. He has been on the Duke faculty since 1975. He is the author of a well-

known text entitled, Probability and Statistics with Reliability, Queuing and Computer Science Applica-

tions, published by Prentice-Hall; a thoroughly revised second edition (including its Indian edition) of this

book has been published by JohnWiley. He has also published two other books entitled, Performance and

Reliability Analysis of Computer Systems, published by Kluwer Academic Publishers and Queueing
Networks and Markov Chains, John Wiley. He is a Fellow of the Institute of Electrical and Electronics

Engineers. He is a Golden Core Member of IEEE Computer Society. He has published over 450 articles

and has supervised 42 Ph.D. dissertations. He is on the editorial boards of Journal of Risk and Reliability,

International Journal of Performability Engineering, and International Journal of Quality and Safety
Engineering. He is the recipient of IEEE Computer Society Technical Achievement Award for his

research on Software Aging and Rejuvenation. His research interests are in reliability, availability,

performance, performability, and survivability modeling of computer and communication systems.

He works closely with industry in carrying our reliability/availability analysis, providing short courses

on reliability, availability, performability modeling, and in the development and dissemination of

software packages such as SHARPE and SPNP.

Ermeson C. Andrade graduated in Computer Science from Catholic University of Pernambuco in 2006

and received his M.Sc. degree in Computer Science at Federal University of Pernambuco in 2009. He is

currently a Ph.D candidate in Computer Science at Federal University of Pernambuco and visiting scholar

of Electrical and Computer Engineering at Duke University. His research interests include performability

analysis, component-based modeling, and hard real-time systems.

Fumio Machida is an assistant manager in NEC Service Platforms Research Laboratories. He was a

visiting scholar of Electrical and Computer Engineering in Duke University in 2010. His primary research

interest is in availability management of large-scale ICT systems such as data centers for cloud computing

services. He has experienced real industrial research projects on enterprise system management, server

virtualization management, autonomic computing, and dependable computing. He has also contributed

industrial standardization activities such as Open Virtualization Format (OVF), Integrated Access Control

Policy Management (IAM) in Distributed Management Task Force (DMTF).

	Combining Performance and Availability Analysis in Practice
	Abstract
	Introduction
	Approaches to Modeling
	Non-State-Space Models
	State-Space Models

	Practical Examples
	Pure Reliability/Availability and Pure Performance Analysis
	Two-Board System
	VAXcluster System
	Telecommunication Switching System

	Composite Performance and Availability Analysis
	Multiprocessor Systems
	Wireless Communication Network System
	Job Completion Time

	Conclusions
	References

