
428 IEEE TRANSACTIONS ON RELIABILITY. VOL. 44, NO. 3. 1995 SEPTEMBER

Dependability Modeling Using Petri-Nets

Manish Malhotra SPN Stochastic Petri Net

Kishor S. Trivedi SRN Stochastic Reward Net.
AT&T Bell Laboratories, Holmdel SPNP Stochastic Petri Net Package

Duke University, Durham
Petri-net based models have been extensively used for per-

formance & performability modeling to analyze computer & com-
munication systems [1 - 71. However, in the dependability model-
ing co-unity, Petri-net based models have received co~i&rably
less attention [8 - 101. This paper describes a methodology to con-

Key Words - Combinatorial model type, dependability, fault-
tree, generalized stochastic Petri net, Markov model, stochastic
reward net

Summary & Conclusions - This paper describes a
methodology to construct dependability models using generalized
stochastic Petri nets (GSPN) and stochastic reward nets (SRN).
Algorithms are provided to convert a fault tree (a commonly used
combinatorial model type) model into equivalent GSPN and SRN
models. In a fault-tree model, various kinds of distributions can
be assigned to components such as defective failure-time distribu-
tion, nondefective failuretime distribution, or a failure probability.
The paper describes subnet constructions for each of these different
cases, and shows how to incorporate repair in these models.

We consider the cases: 1) Each component has an indepen-
dent repair facility. 2) Several components share a repair facility;
such repair dependency cannot be modeled by combinatorial model
types such as fault trees. We illustrate how such dependencies and
various scheduling disciplines (for the repair queue) such as first-
come first-served (FCFS), processor-sharing, preemptive priority
with resume, and non-preemptive priority repair, can be modeled
by GSPN & SRN. If the operational dependence of a system on
its components is specified by means of a fault-tree and a repair
dependence is described in some (other) form, then our
methodology provides an automatic way to generate GSPN & SRN
models of system dependability.

The subnet constructions allow us to compare SRN with GSPN
as dependability model types. For the dependability models of
repairable systems, the complexity (number of places and transi-
tions) of GSPN models is appreciably higher than the complexity
of equivalent SRN models. The state-space of the underlying
continuous-time Markov chain (CTMC) remains the same,
however. Thus SRN reduce the complexity of model specification
at the net level, but the complexity of model solution remains the
same. Since SRN include all the features of GSPN, the additional
features of SRN such as reward rates, variable cardinality arcs,
halting condition, and timed transition priorities, greatly simplify
model construction & specification.

1. INTRODUCTION

Acronyms'

CTMC Continuous Time Markov Chain
FCFS First Come First Served
FTRE Fault Tree with Repeated Events
GSPN Generalized Stochastic Petri Net\\

'The singular & plural of an acronym are always spelled the same.

struct dependability models using Petri nets. Among the Petri-
net based model types, we consider GSPN [2] and SRN [l 11.

SRN extend the GSPN, ie, they include all the features
of GSPN and many more, eg, guards (previously called enabl-
ing functions), timed transition priorities, variable cardinality
arcs, halting condition, and reward rates. None of these exten-
sions enhances the modeling power since every SRN model can
be converted to a CTMC which are isomorphic to GSPN [2];
although SRN allow calculation of some reward-based measures
which are not possible through GSPN [12]. Thus any system
that can be modeled by a SRN can also be modeled by a GSPN.
However, SRN and GSPN differ in the conciseness of model
specification. SRN permit a much more concise description of
system dependability than GSPN do. An aim of this paper is
to bring out this distinction among these two different Petri-net
model types. By converting dependability models specified as
FTRE models to equivalent GSPN and SRN models, we il-
lustrate how the features of SRN greatly simplify the model con-
struction. A popular software tool for GSPN models is
GreatSPN [13] and for SRN models is SPNP [12].

The model types used for dependability are in 2 categories:
1) combinatorial, and 2) state-space. Among the former are
reliability block diagrams, fault trees, and reliability graphs.
State-space model types include continuous-time Markov chains
and Petri-net based models. Ref [14] compares various com-
binatorial model types based on their modeling power, and
shows that FTRE is the most powerful combinatorial model
type. The major handicap of combinatorial model types is that
they cannot model certain kinds of dependencies, the most com-
mon one being the repair dependency among components where
several components share a repair facility.

We first illustrate how an FTRE [15, 161 model can be
converted to an equivalent GSPN or SRN model, and provide
algorithms for these conversions. These algorithms can be easily
modified to convert a reliability block diagram or reliability
graph into GSPN or SRN models. The subnet constructions in-
volved in these conversions are based on the kind of distribu-
tion assigned to each component of the system. For instance,
in an FTRE model, it is common to assign failure probabilities
(a distribution with mass at time zero and mass at infinity which
sum to one) to each component, or assign a failure-time distribu-
tion in which a component can be faulty from the very start
of system operation (mass at time zero). We illustrate subnet
constructions for such commonly occurring cases.

0018-9529/95/$4.00 01995 IEEE

MALHOTWRIVEDI: DEPENDABILITY MODELING USING PETRI NETS 429

We then show how repair dependencies such as shared
repair persons between various components of a system, which
cannot be modeled by FTRE models, can be modeled by Petri-
net based models. Failed components queue up for repair if the
repair facility is busy. The repair requests in the queue can be
serviced according to some scheduling discipline such as FCFS,
processor-sharing , non-preemptive priority, and preemptive
resume priority. We provide GSPN & SRN subnet construc-
tions for these 4 scheduling disciplines. These constructions pro-
vide insight into the differences between GSPN and SRN and
reveal that certain features of SRN can be very useful in suc-
cinctly capturing failure-repair characteristics of systems. For
a given system whose operational dependency on components
is specified by an FTRE model (or any combinatorial model
type), our methodology provides a direct way to construct a
GSPN or a SRN model which incorporates repair dependen-
cies among the components. For other applications of SRN to
dependability modeling, refer to [17 - 191.

Section 2 briefly introduces Petri nets. Section 3 describes
2 examples that are used throughout this paper: 1) a simple
series-parallel system, and 2) a more complex multiprocessor
system. Sections 4 & 5 describe how an FTRE reliability model
without repair can be converted into equivalent GSPN and SRN
models respectively. Section 6 describes how to introduce repair
(without any repair dependency) in GSPN and SRN models.
Section 7 describes how to introduce repair (without dependen-
cy) into GSPN & SRN models. Section 8 describes how to in-
corporate repair (with dependency - shared repair facility
among components) and different queuing disciplines in GSPN
and SRN models.

Notation

x.up, x.dn a place where the presence of a token implies that
component x is [up, down]

a transition implying failure
a place where the presence of a token implies that the
system is down
time instant
Pr{component is in state i at time t}
steady-state probability of being in state i
reward rate in marking i
set of tangible markings
[steady-state, instantaneous] reward rate, a r.v.
continuous-time Markov chain
state-space of Cp (t)
transition rate from state i to state j , i # j
a number chosen such that q 2 maxi{ Iqi,il}
infinitesimal generator matrix of Z (t)
state probability vector of Cp(t) at time t
initial state probability vector of Cp(t)
steady-state probability vector of Cp (t)
[memory, processor] module i
interconnection network
disk j of processing subsystem i
time to failure of a component, a r.v.
failure rate of the component

X

Ci

P
RC[x]
#tokens(x) number of tokens in place x of a Petri net
Ci component i
pi repair rate of Ci
Xi priority of tfansition ti.

Other, standard notation is given in “Information for Readers
& Authors” at the rear of each issue.

a node in an FTRE
input (child) i to a gate (AND or OR)
constant probability-mass at time OD
reachability-count of node with label x

2. PETRI NETS

A Petri net [20] is a directed bipartite graph with 2 dis-
joint sets of nodes: places and transitions. In a graphical
representation of a Petri net, places are represented by circles,
and transitions are represented by bars. In a Petri net, there are
a finite number of places and transitions. Nodes are connected
by directed edges. A place is an input to a transition if there
is an edge from the place to the transition. That edge is an in-
put arc. A place is an output of a transition if there is an edge
from the transition to the place. That edge is an output arc. An
integral multiplicity can be associated with each input and out-
put arc (default is 1).

A Petri net is marked if tokens are associated with the
places. The dynamic behavior of the system is determined by
the movement of tokens. The tokens move based upon thejr-
ing of transitions. A transition is enabled to fire if the number
of tokens in each of its input places is at least equal to the
multiplicity of the corresponding input arc from that place.
When a transition fires, tokens are removed from each of its
input places and deposited in each of its output places. The
number of tokens removed from each of the input places of a
firing transition is equal to the multiplicity of the correspon-
ding input arc; the number of tokens deposited in its output
places is equal to the multiplicity of the corresponding output
arc. At any instant of time, more than one transition can be
enabled but only one transition is allowed to fire. In a graphical
representation of a Petri net, tokens are denoted by small dots
or integers within a place. Multiplicity of arcs is denoted by
putting a backslash on the arc and placing a positive integer with
it. If multiplicity is not indicated, then default multiplicity of
1 is assumed.

A marking of a Petri net is the distribution of tokens in
the set of places of the Petri net. Thus firing of a transition results
in a new marking. Each marking defines a state of the system.
If the number of tokens in the net is bounded, then there are
a finite number of markings. A marking is reachabZe from an
original marking if there is a sequence of transition firings star-
ting from the original marking which results in that marking.
The reachability set (graph) of a Petri net is the set of all mark-
ings that are reachable from the initial marking.

Petri nets have been extended for increased ease of use
and enhanced modeling power. For instance, inhibitor arcs can
be allowed that prevent firing of a transition when there is a

~

430 IEEE TRANSACXIONS ON RELIABILITY, VOL. 44, NO. 3,1995 SEPTEMBER

token in any one of its inhibitor input places. Most important-
ly, firing times can be associated with transitions. When the
distribution of firing times for all transitions is exponential, the
net is a stochastic Petri net (SPN) [5] . Ajmone-Marsan et a1
[2] proposed generalized stochastic Petri nets (GSPN) which
allow transitions to have 0 firing time (immediate transitions)
or exponentially distributed firing times (timed transitions). SPN
& GSPN are equivalent to CTMC. Extensions that allow non-
exponential distributions are discussed in [2 11. There are 2 types
of markings of a GSPN: 1) vanishing (at least one immediate
transition is enabled in that marking), and 2) tangible
(otherwise).

Ciardo et a1 [121 introduced structural extensions to GSPN
eg 9

enabling functions (guards) for transitions - transitions enabl-
ed based on some explicitly stated conditions and not just on
distribution of tokens in input places,
marking dependent arc multiplicities,
timed transition priorities.

The resulting net with all these extensions can still be converted
to a CTMC. However, there are tradeoffs with these extensions.
Whereas these extensions make the task of modeling very sim-
ple and reduce the size of the net considerably, the complexity
of understanding does increase. Ciardo et a1 [l] also introduc-
ed stochastic reward nets (SRN). SRN differ from GSPN in
that reward rates (numerical values) are specifiable at the net
level and translate into a reward rate being associated with each
marking of the net. Use of reward rates reduces the size of the
net because many aspects of a system that would have to be
modeled explicitly by places & transitions in a GSPN can be
expressed by arithmetic and Boolean expressions involving
reward rates in an SRN.

Example 2-CPS

P.up P. f 1 P. dn

PQ.fl sys.dn

Q * ~ P Q * f l Q.dn

Figure 1. GSPN Model of a 2-Component Parallel System

There is a 2-component parallel2 system. The com-
ponents are labeled P & Q. Figure 1 is the GSPN reliability
model. Firing of the transition Z.fl represents the failure of com-
ponent W (W = P , Q) . It results in removal of the token from
the place W.up and its deposit in the place W.dn. A constant

'The terms, series & parallel are used in their logic-diagram sense,
irrespective of the schematic-diagram or physical-layout.

failure rate of component W is associated with this transition.
Transition PQ.fl is an immediate transition which fires iff there
is a token in place P.dn and a token in place Q.dn (both P &
Q have failed). This results in a token being deposited in the
place sys.dn, which implies failure of the system.

The system unreliability at time t is:

Pr{there is a token in place sys.dn at time t } .

The analytic solution of this GSPN model requires conversion
of the GSPN model to a Markov model and computation of the
probability of being in the srate, corresponding to the marking
of the net in which there is one token in place sys.dn at time t.

P.up Q-UP

P.dn Q.dn
Figure 2. SRN Model of a 2-Component Parallel System

Figure 2 is a SRN reliability model of this system. The
reward rate assignment to compute the reliability of the system
is:

if (number of tokens in P.up = = 1) or (number of tokens in
Q.up == 1)

then reward rate = 1 (system is operational)
else reward rate = 0 (system is down)

endif

The mean value of the reward rate at time t gives the reliability
of the system at time t . Thus SRN computes system dependabili-
ty measures as reward-based measures. Compared with the
GSPN model in figure 1, the SRN model in figure 2 does not
need the 3 extra places (P.dn, Q.dn, sys.dn) nor an extra im-
mediate transition (PQ.fl). The purpose of these added places
& transitions is to check whether the system is failed in a given
marking. The specification of reward rates obviates this explicit

Other measures can also be computed as reward-based
checking. 4

metrics.

E{Z} = ri.?ri,

(no time is spent in the vanishing markings).

i E 3

E { Z (t) } = ri*Pi(t) .
i E 3

Similarly, accumulated reward measures [I] can also be
computed.

MALHOTRmRIVEDI: DEPENDABILITY MODELING USING PETRI NETS 431

The ai & pi (t) can be computed by solving the underly- based on this example are therefore generic and apply to any
system with such dependencies. ing CTMC obtained from the SRN.

I Notation

{ 9 (t) , t 2 0 } CTMC with state-space
n {l ,2, ... ,n} .
Q [qijl

qi,i - qij: infinitesimal generator matrix ofthe CTMC
n

j=lj#i

4 maxi I 4i,i I
P (t) [P 1 (t) 9 ~ 2 (t) , > pn(t)l
n [7F*,K2, ... 9 Knl.

A B

Figure 4. FTRE Model of the Series-ParallelSystem in Figure 3

Example 3.2 considers a more complex system whose sub-
systems have series and parallel dependencies, and it is easy
to see how the conclusions from a simple model carry over to
the models of complex systems. More complex dependencies
[25] such as k-out-of-n dependence also occur in practice, but
our purpose is served by illustrating with this simple series-

State i is the same as marking i .

P (t) is computed by solving a system of first order linear dif-
ferential (Kolmogorov) equations :

= P (t) x Q ;
dt parallel system.

the initial condition is specified by P(0).

For numerical solution, see [22, 231.

ll is obtained by solving a system of linear equations:

3.2 A Fault-Tolerant Multiprocessor System

l l * Q = 0,

n

Kj = 1.
i = 1

For numerical solution, see [24].

3. EXAMPLES USED

These 2 examples are used throughout this paper.

I I-

I

Figure 5. Fault-Tolerant Multiprocessor System
3.1 A Series-Parallel System

El---
Figure 3. A 3-Component Series-Parallel System

A series-parallel system has 3 components A, B, C, as
shown in figure 3. The system is operational as long as compo-
nent C and at least one of components A or B are operational.
Dependability of this system can be modeled by the FTRE model
shown in figure 4. Any real fault-tolerant system typically con-
sists of subsystems, many of which have series and parallel
dependencies on basic components. The conclusions we draw

A
J I

Figure 6. FTRE Model of the Multiprocessor System in Figure 5

432 IEEE TRANSACTIONS ON RELIABILITY, VOL. 44, NO. 3, 1995 SEPTEMBER

Figure 5 shows the fault-tolerant multiprocessor system
which consists of 2 processors Pi (i = 1,2) with a private
memory Mi. A processor and a memory form a processing
unit. Each processing unit is connected to a mirrored disk
system. This forms a processing subsystem. Memory module
M3 is shared by P, & P2. If Ml, M2, or both Ml & M2 fail,
then both the processing subsystems continue to function since
P1 & P2 can both access M3 if necessary. However, if M , &
M3 fail, then the processing subsystem of P1 fails. Both the
processing subsystems and M3 are connected via an intercon-
nection network N . The system is functional iff N is functional
and 1 of the processing subsystems is functional. For a pro-
cessing subsystem to be functional, the processor, memory
module or shared memory module, and 1 of the 2 mirrored disks
must be functional. For simplicity and sake of illustration, we
restrict ourselves to this 2 processor system. This architecture
is easily scaled to many processors. The reliability of this
multiprocessor system is modeled by the FTRE in figure 6. M3
is a repeated event in this model.

4. CONVERTING FTRE TO GSPN

This section illustrates how an FTRE model of a non-
repairable system can be converted to an equivalent GSPN
model.

Assumption (unless otherwise stated)

1. The time-to-failure and time-to-repair distributions of

In principle, one could convert an FTRE to a Markov chain
[26] and then convert the Markov chain into a GSPN model
[14]. However, the GSPN model could be totally non-intuitive
and appreciably less compact than the one obtained by careful
design. Our direct conversion algorithm yields more-compact
and more-intuitive GSPN models.

To generate the equivalent GSPN model, we must con-
sider the input associated with the basic events in the FTRE
model. This could be the time-to-failure distribution, failure
probability, or instantaneous unavailability of the component.
The time-to-failure distribution can be further classified as:

any component are exponential. 4

mass at time 0 mass at time 00

1. non-defective no no
2. defective Yes no
3. defective Yes Yes
4. defective no yes.

Pr{X < CO} = 1.

Assumption

2. Basic events as well as outputs of gates can be shared
(repeated). 4

Conversion Algorithm

Oa. For each event: Count the number of times an event
(basic or output of a gate) is repeated and set RC[x] . Then RC[x]
is at least 1 for each x, unless there is some error in the specifica-
tion of the FTRE.

Ob. For each node x: set DONE[x] - FALSE (this in-
dicates that the subnet for this componentlgate has not been
generated).

/ * These two steps, Oa & Ob, can be carried out in O (n) time
(n is the number of events in the FTRE). */

1. Use Algorithm FTRE-to-GSPN(x) in table 1.

/* This is a postorder traversal of the FTRE starting from the
root. The equivalent GSPN model is obtained by calling this
procedure; x points to the top gate of the FTRE. This algorithm
is recursive (calls itself). * /

TABLE 1
Conversion Algorithm for FTRE to GSPN

Algorithm FTRE-to-GSPN(x)
begin
if (x # NIL) then

Test True
Case (x is a basic event) and (DONE[x] = = FALSE):

Construct the subnet in figure 7a and label each place;
DONE[x] - TRUE; EndCase

Let c1. ,cx be the inputs (children) of x
foreach cj, i - 1, ..., x do

Construct the subnet in figure 7b
DONE[x] - TRUE; EndCase

Let c , , , cx be the inputs (children) of x
foreach ci, i - 1, ..., x do

Construct the subnet in figure 7c
DONE[x] - TRUE; EndCase

Case (x is an AND gate):

FTRE-to-GSPN(ci)

Case (x is an OR gate):

FTRE-to-GSPN(ci)

EndTest
Endlf

end
Construct inhibitor arcs from root.dn to all the timed transitions.

Case 1 is discussed in detail. Cases 2 & 3 are discussed briefly
since they can be handled in a similar fashion. Case 4 is not
discussed because it does not commonly occur in practice.

4.1 Non-defective Failure-Time Distribution

Pr{X=O) = 0,

At the end, after the postorder traversal of the entire FTRE
is completed, construct inhibitor arcs from the place root.dn
(the dn place for the top gate in the FTRE) to all the timed tran-
sitions. This is done so that after the system fails, failure of
operational components is disallowed to prevent generation of
unnecessary markings. This reduces the number of states of the

MALHOTRmRIVEDI: DEPENDABILITY MODELING USING PETRI NETS 433

underlying Markov chain. Thus, both storage & time are saved
since a smaller Markov chain needs to be generated &stored.

Pr{X=O) = 1 - p,

2.up

c1 .dn

q . d n

c,.dn

cl.dn

cpdn

c,.dn

b.

0'

I

I

x.dn I

C.

Figure 7. GSPN Subnets for Converting an FTRE Model to a
GSPN Model

The complexity of the GSPN model can be expressed in
terms of number of places & transitions. After this conversion
algorithm, then:

#(places) L 2 .#(components) + #(gates)
#(timed transitions) = #(components)
#(immediate transitions) 2 #(AND gates) + E, E OR

#(inputs to gate g)
gates

The number of immediate transitions & places could be more
than the sum on the r.h.s. if any of the OR gates in the FTRE
are repeated since an extra place and immediate transition (see
the dashed rectangular box in figure 7c) are needed in that case.

The GSPN models obtained from converting the FTRE
models of the series-parallel system (figure 4) and the
multiprocessor system (figure 6) are shown in figures 8 & 9
respectively. They show how the subnet constructions for the
series-parallel dependence carry over from the simple series-
parallel system to the more complex multiprocessor system.

3.2 Failure-Time Distribution with Mass at t =O

A defective distribution with probability 1 -p at time 0 is
assigned to each component.

B.up

A.up
I
I
I

I
I

sys.dn

Figure 8. GSPN Model of the Series-Parallel System in Figure
4

Figure 9. GSPN Model of the Multiprocessor System in Figure
6

P x.up

1 - P

Figure 10. GSPN Subnet when Failure-Time Distribution Has
Mass at t - 0

A common example occurs when a component can be faul-
ty in the beginning (time 0) with some probability. To model

434

such a scenario, we need to modify figure 7a as shown in figure
10. Another way to look at this is to compute a new initial-state
distribution. The initial distribution is:

With probability p , there is one token in place x.up at the
start and with probability 1 - p , there is a token in place x.dn
at the start. Figures 7b & 7c remain the same and so does the
algorithm in table 1.

4.3 Failure-Time Distribution with Mass at t = 0 & 00

IEEE TRANSACTIONS ON RELIABILITY. VOL. 44. NO. 3, 1995 SEPTEMBER

I W

P
Figure 11. GSPN Subnet with Specified Failure-Probability of

a Component

A constant failure probability 1 -p is assigned to each com-
ponent. Looking at it as a distribution of defectives implies that
there is probability 1 -p at time 0 and probability p at time 03.

Pr{X = 00) = p .

An example occurs when a component is either faulty or
fault-free (does not fail as time progresses) from the very start
of system operation. To model this scenario, we need to modify
figure 7a as shown in figure 11. Figures 7b & 7c remain the
same and so does the algorithm in table 1.

4.4 Discussion

In all these cases (sections 4.1 - 4.3), the algorithm to con-
struct the overall GSPN model remains the same. Only the
subnet for each component changes depending upon the kind
of distribution assigned to each component, By virtue of our
constructions, this methodology extends to the case where a
defective failure-time distribution is specified for some com-
ponents while a non-defective failure-time distribution is
specified for the others. The important thing is proper labeling
of places x.dn and x.up in the subnet for a component x . Once
these places have been generated for each component x , the con-
struction of the rest of the net remains the same regardless of
the kind of distribution assigned to each component.

5 . CONVERTING FTRE TO SRN

This section illustrates how an FTRE reliability model (no
repair) can be converted to an equivalent SRN model. In the
process of doing so, we hope to distinguish between SRN and

GSPN. As we did for GSPN in section 4, we discuss different
cases based on the kind of failure-time distributions assigned
to the basic events in the FTRE model.

5.1 Non-Defective Failure-time Distribution

The algorithm to convert an FTRE into an SRN is based
on a similar postorder traversal of the FTRE as the algorithm
(table 1) for converting an FTRE to a GSPN. The difference
is in the actions taken when a node is encountered. Every time
a gate is encountered, instead of constructing a subnet of im-
mediate transitions and places, a reward rate function is
constructed.

Unlike the conversion to GSPN, we do not need to per-
form the preprocessing step to count the number of times an
event (basic or output of a gate) is repeated, because the value
of RC[x] is not needed in this algorithm. For each node x , set
DONE[x] - FALSE. The remaining steps are carried out by
a postorder traversal of the FTRE starting from the root. Every
time a node (a basic event or a gate) is encountered, a specific
action is performed. Table 2 shows the algorithm for the
postorder tree-traversal

TABLE 2
Conversion Algorithm for FTRE to SRN

Algorithm FTRE-toSRN(x)
begin
if (x # NIL) then

Test True
Case (x is a basic event) and (DONE[x] = = FALSE):

Construct the subnet in figure 7a and label each place;
boo@) - (#token(x.dn) == 1)
DONE[x] - TRUE; EndCase

Let c,,, cx be the inputs (children) of x
foreach ci. i - 1, ..., x do

Case (x is an AND gate):

FTRE-to-SRN(ci)
bool(x) - bool(c,) A bool(c2) A ... A bool(cx)
DONE[x] - TRUE; EndCase

Case (x is an OR gate):
Let c1,, c+ be the inputs (children) of x
foreach ci, i - 1, ..., x do

FTRE-to-SRN(ci)
bool(x) - bool(cl) V bool(cz) V ... V bool(c+)

DONE[x] - TRUE; EndCase
EndTest

Endlf
end
if (bool(root) = = 1)

then disable all the transitions in the net.
endif

The idea behind the halting condition is to prevent generation
of unnecessary markings. Suppose that the system fails due to
failure of some components, and is shut down. This shut-down
implies that no more activity takes place in the system, ie, opera-
tional components can no longer fail. Thus, all the transitions
within the system must be disabled. If the transitions are not

MALHOTRmRIVEDI: DEPENDABILITY MODELING USING PETRI NETS 435

Gate Boolean Function
bool(G2)

. bool(G1)
(#tokens(A.dn) == 1) A (# tokens(B.dn) == 1)

b l (G 1) V (# tokens(C.dn) == 1)

disabled, then many more markings will be generated, each of
which represent a system failure state. The halting-condition
disables all the transitions after system failure and prevents
generation of these unnecessary markings.

The SRN model is obtained by calling:
FTREto-SRN(root), The reliability of the system is specified
by the reward function:

if (bool(root) == 0)
then r = l (system is operational)
else r=O (system is failed)
endif

The system reliability at time t is computed as the mean value
of the reward rate r at time t .

Q Q 9
A A A

Halting Condition
if (bool(G1) == 1) then disable all the transitions

Figure 12. SRN Model of the Series-Parallel System in Figure 4

The SRN models obtained from converting the FTRE
models of the series-parallel system (figure 4) and the
multiprocessor system (figure 6) are shown in figures 12 & 13
respectively. bool(G1) is used to specify the system reliability
in both the cases. Upon comparing these SRN models with the
equivalent GSPN models in figures 8 & 9 we note:

SRN models replace the mesh of immediate transitions and
places in GSPN models by a reward rate assignment.
The use of the halting condition in SRN avoids the need of
inhibitor arcs to prevent generation of unnecessary markings.

4

5.3 Failure-Time Distribution with Mass at t = 0 & 00

The SRN subnet for each component is the same as the
GSPN subnet in figure 1 1 .

Ml .dn PI.& Dll.dn Dl l .dn N.dn

Halting Condition
if (bool(G1) == 1) then disable all the transitions

Figure 13. SRN Model of the Multiprocessor System in Figure
6

5.4 Discussion

In these cases (sections 5.1 - 5.3) the SRN model consists
simply of such subnets for each component, unlike GSPN
models which need the mesh of immediate transitions, places,
and inhibitor arcs.

6. MODELING REPAIR

(Without Repair-Dependencies)
The complexity of the SRN model in figure 13 is:

#(places) = 2 - #(components)

#(timed transitions) = #(components)

#(immediate transitions) = 0

5.2 Failure-Time Distribution with Mass at t=O

The SRN subnet for each component is the same as the
GSPN subnet in figure 10.

In sections 3 - 5 the system was non-repairable. We now
consider how to model repairable systems. In practice, the repair
of a failed component consists of calling the repair person,
removal of bugs, purchase of new component, replacement of
faulty component, installing the new component, reconfigur-
ing the new component, and testing the new component. For
simplicity & illustration, we group all these steps together into
a collective action called repair. Combinatorial-model types such
as reliability block diagrams, FTRE, and reliability graphs, can
model only the case where each component of the multiprocessor
system has an s-independent repair person.

436 IEEE TRANSACTIONS ON RELIABILITY, VOL. 44, NO. 3,1995 SEPTEMBER

6.1 GSPN Models hibitor arcs in the mesh of immediate transitions and places.
We also need to introduce a complementary mirrored subnet
to remove appropriately the tokens from the places which in-
dicate different subsystem failures in order to reflect compo-
nent repair. We call this subnet complementary since the AND

plemented: AND becomes OR and vice-versa.

If processor P2 fails

r - - - - - - - - - ‘ - - - -

I & OR dependencies of subsystems or components are com-

For example, consider place A in the GSPN in figure 15.

I

I OR if both disks D21 AND 4 2 have failed

OR if both memory modules M2 AND M3 have failed,

then there will be a token in place A. After repair, suppose that
none of the 3 conditions hold, then we must remove the token
from place A; ie,

if ‘P2 is up’ AND ‘either of disks 0 2 , OR 0 2 2 is up’ AND

U B.dn
L - - - - - - - - - - - - - - J

Figure 14. GSPN Model of the Series-Parallel System (in
Figure 4) with Repair

,_______._ ._ ._ .___. ,
I I

‘either of M2 OR M3 is up’,

then we must remove the token from place A. These conditions
are complementary to the conditions which led to the deposit
of a token in place A. The complementary subnet modeling these
conditions is enclosed in the dashed rectangular box in figures
14 & 15. The leftmost immediate transition in these boxes has
no output place; ie, the tokens disappear when this transition
fires.

One of the other modifications required is the need of
several inhibitor arcs on the immediate transitions (both in the
original subnet and its complementary subnet) to prevent these
transitions from continuously firing (since at least one of the
input places to these transitions is also one of the output places).
Thus, unless the inhibitor arcs are used, these transitions will
fire indefinitely. An algorithm to convert an FTRE model where
each component has its own repair facility into a GSPN model
can be derived based on the arguments given here. It will be
similar to the algorithm in table 1. Various output measures can
be computed from this model. Steady-state probability of a token

sient probability of a token in place PF gives instantaneous
unavailability of the system.

PF

1 I in place PF gives steady-state unavailability of the system. Tran-

. _____ ._ ._ . . . _____ . - . - - - .~
Figure 15. BSPN Model of the Multiprocessor System (in

Figure 6) with Repair

The Of the GSPN with repair is:

#(places) 2 2 -#(components) + 2 .#(gates)

The GSPN models of the series-parallel system and the
multiprocessor system where each component has its s-
independent repair facility are shown in figures 14 & 16 respec-
tively. In these models, we have not shown the inhibitor arcs
(to disable failure transitions after system failure) for sake of
clarity, but they are present just as in the models in figures 8
& 9. Comparing the GSPN models with and without repair,
figures 8 & 14 and figures 9 & 15, we find that it is not enough
to introduce only the repair transitions to model repair of com-
ponents. In the GSPN models without repair (figures 8 & 11)
the flow of tokens is l-way and that keeps the net simple.
However, when repair is introduced (figures 14 & 15) the flow
of tokens is 2-way, and that requires more output arcs and in-

#(timed transitions) = 2 .#(components)

#(immediate transitions) L CgEgates (#(inputs to gate g) +- 1)

The complexity of the complementary net (number of places
& transitions) is nearly the same as the complexity of the original
net (modeling the FTRE with no repair). Thus, the size of the
GSPN nearly doubles in order to model repair.

6.2 SRN Models

The SRN models of the series-parallel system and the multi-
processor system where each component has an s-independent

437 MALHOTR"RIVED1: DEPENDABILITY MODELING USING PETRI NETS

Figure 16.

D21 .UP

Dzl .dn

MI .dn

M 1 . u ~

Figure 17.

A.up B.up c.up

U
A.dn

U
B.dn

W
C.dn

SRN Model of the Series-Parallel System (in Figure
4) with Repair

SRN Model of the Multiprocessor System (in Figure
6) with Repair

repair facility are shown in figures 16 & 17. Comparing these
models with the GSPN models in figures 14 & 15, the usefulness
of SRN over GSPN becomes obvious. The only modification
needed for the SRN models in figures 12 & 13 is to add transi-
tions for repair of components. The Boolean function bool(G1)
which was used to specify the reward function for reliability
of the series-parallel and the multiprocessor system (figures 12
& 13 respectively) can also be used to specify the reward func-
tion for the availability of the systems. However, there is no
halting condition in this case since the system is repairable
(repair transitions must not be disabled after system failure).
Instead, there are guards for each failure transition. These
guards disable the failure transitions while the system is down
(ie, components do not fail while the system is down). The guard
for each failure transition in the SRN model in both figures 16
& 17 would be:

if (bool(G,) == 1)
then disable the transition\\
else enable the transition
endif

A guard is specified for each transition independently. The
failure transitions are enabled once the system is operational
again. Contrasting the SRN models with the eauivalent GSPN

models where a complementary subnet of about the same size
as the original subnet must be constructed to model the repair
of components, the SRN models more succinctly capture the
failure-repair behavior of a system than do the GSPN models.

Besides the standard output measures such as instantaneous
& steady-state availability, we can also compute cumulative up
(or down) time of the system until time t. This is done by com-
puting the accumulated reward in the system up (or down) states.

The complexity of the SRN models with repair is:

#(places) = 2 - #(components)

#(timed transitions) = 2 .#(components)

#(immediate transitions) = 0.

7. MODELING REPAIR

(With Repair-Dependencies)

Section 6 considered the simple case where each compo-
nent of a system has its s-independent repair facility. In prac-
tice, this is not the case. Usually, repair facilities are shared
among components. If a component fails while the repair facility
is busy, then it has to queue for service. Components that queue
for service are serviced according to some scheduling policy.
This section shows how to model a) such repair dependency,
and b) various scheduling disciplines using GSPN & SRN
models. Example 3-CPS is used in sections 7.1 - 7.4.

Example 3-CPS

Aparallel system has 3 components C,, C2, C3 that share
a repair facility R. The repair discipline is different for each

4 case.

7.1 FCFS Repair Discipline

Example 3-CPS is used with the repair discipline: Com-
ponents that arrive for repair at a repair facility are served in
the order of arrival.

1 /

1 1

I

91 1

1 -0 ~~- ---- . ~~~. -__. . Figure 18. SRN Subnet for Modeling FCFS Repair Discipline

438 IEEE TRANSACTIONS ON RELIABILITY. VOL. 44, NO. 3.1995 SEPTEMBER

Cl.dnl 1
I

I 1

I I

Figure 19. GSPN Subnet for Modeling FCFS Repair Discipline

Figure 18 shows the SRN subnet for this discipline. The
component that arrives for repair first, grabs the token from
place R (ie, grabs the repair facility) and releases it only after
repair is completed. The FCFS queue is modeled by the places
Q, , Q2, or Q3 and the immediate transitions and inhibitor arcs
between them. Each Ci is identified by i tokens in any of the
places Q,, Q2, Q3. The arcs with a ‘2’ like sign are variable
cardinality arcs, a special feature of SRN. Each time transition
tqi (i = 1,2) fires, it removes as many tokens as present in Qi
and places them in Qi+ ,. The reward rate r for availability of
this system is:

if ((#tokens(Cl.up) == 1) V (#tokens(C2.up) == 1) V
(#tokens(C3.up) = = 1))

then r = 1 (system is up)
else r = 0 (system is down)
endif

Figure 19 shows the GSPN subnet of the same system with
FCFS repair queue. This differs from the SRN subnet only in

4
Since GSPN do not allow variable cardinality arcs, we need

to model explicitly that behavior [121, and the net becomes ap-
preciably complicated.

the modeling of the FCFS queue.

7.2 Preemptive Resume Priority (PRP) Repair Discipline

Example 3-CPS is used with the PRP repair discipline:
Components that arrive for repair at a repair facility are served
in the order of component priority - that priority decreases
in the order C,, C2, C3.

Figure 20. SRN Subnet for Modeling PRP Repair Discipline

I I

1 I

Figure 21. GSPN Subnet for Modeling PRP Repair Discipline

If a high priority component needs repair while a low
priority component is being repaired, then the repair of low
priority component is preempted and resumed after the repair
of high priority component is completed. By virtue of
memoryless property of exponential distribution, the amount
of remaining repair time has the same distribution as the original
repair time.

Figure 20 shows the SRN model for this system. Priority
xi , i=1,2,3 (xl > x2 > x 3) is assigned to the timed transi-
tion tri. An enabled timed transition is disabled if another tim-
ed transition with higher priority is enabled before this transi-
tion fires. This models the PRP repair discipline. Although
the repair facility is a shared resource which is in contention
when more than one component has failed, it is not explicitly
modeled.

Figure 21 shows the equivalent GSPN subnet. Since GSPN
does not allow priorities on timed transitions, the PRP repair
discipline has to be explicitly modeled. Comparing the models
in figures 20 & 21 shows that a simple feature of SRN results
in a appreciably more-concise model specification than
GSPN .

7.3 Non-Preemptive Priority Repair (Non-PRP) Discipline

Example 3-CPS is used with the Non-PRP repair
discipline: Same as PRP except that the component which
is being repaired currently is not preempted if a higher priori-
ty component arrives for repair. However, after the current
repair completes, then the highest priority component from
the queued components is selected for repair.

Figure 22 shows the GSPN model for this system. The
priority is modeled by inhibitor arcs. For instance, these
arcs guarantee that if C1 and C2 (or C3) are waiting in the
queue for repair, then C1 begins repair first, and C2 (or
C3) is repaired after C1 finishes repair. This could also be
modeled by simply assigning priorities xl, x2, x3 (xl > x2
> x3) respectively to the immediate transitions t l r t2, t3.
GSPN & SRN result in the same model specification.

MALHOTRNTRIVEDI: DEPENDABILITY MODELING USING PETRI NETS 439

7.4 Processor Sharing (PS) Repair Discipline

Example 3-CPS is used with the PS repair discipline: No
queuing takes place at the repair facility. Instead, each failed
component perceives the repair facility to be slowed by a fac-
tor of k if there are k failed components waiting to be repaired
at any instant.

Cl.dnl

I
C?.dnl ‘ I . I ‘ I I

Figure 22.

7.5 Discussion

The overall GSPN models in sections 7.1 - 7.4 (different
scheduling disciplines) contain the subnets shown in the cor-
responding figures, and the mesh of immediate transitions and
places which models the operational dependency of the system
onto its components. However, compared to the no-repair-
dependency case (figure 15), this mesh is more complicated
since now there is more than one place per component where
a token indicates failure of a component. For example, a token
in place Cl.dnl or Cl.dn2 (figures 19 & 22) indicates that com-
ponent C1 is down.

ACKNOWLEDGMENT

This work was partially done while the first author was
at Duke University. This work was supported in part by the
US National Science Foundation under grant CCR-9108114 and
by the US Naval Surface Warfare Center under grant
N60921-92-C-0161.

REFERENCES

w : ; ! [l] G. Ciardo, J. Muppala, K. Trivedi, “Analyzing concurrent and fault-
tolerant software using stochastic reward nets”, J. Parallel & Distributed
Computing, vol 15, 1992, pp 255-269.

[2] M. Ajmone-Marsan, G. Conte, G . Balbo, “A class of generalized
stochastic Petri nets for the performance evaluation of multiprocessor
systems”, ACM Trans. Computer Systems, vol2, nun 2, 1984, pp 93-122.

[3] M. Ajmone-Marsan, G . Balbo, G. Conte, Performance Models of
Multiprocessor Systems, 1986; MIT Press.

[4] J. Meyer, A. Movaghar, W. Sanders, “Stochastic activity networks:
Structure, behavior, and application”, Inr’l Workshop Petri Nets and Per-

- - - J I

- - - - J

GSPN/SRN Subnet for Modeling Non-PRP Repair
Discipline

tr2#

C2.dn c3.dn
Transition Rate Function

&I pl/(#tokens(C, .dn) + #tokens(C2.dn) + #tokens(C3.dn))

tr2

tr3

p2/(#tokens(C1 .dn) + #tokens(C2.dn) + #tokens(C3.dn))

p3/(#tokens(C1 .dn) + #tokens(C2.dn) + #tokens(Cj.dn))

Figure 23. GSPNlSRN Subnet for Modeling PS Repair
Discipline

This is easily modeled by GSPN & SRN by assigning
marking-dependent transition rates to transitions trl , tr2, tr3 as
shown in figure 23; U p i is the mean repair time for Ci. GSPN

formance Models, 1985 Jul, pp 106-115; Torino, Italy.
M. Molloy, “Performance analysis using stochastic Petri nets”, IEEE
Trans. Computers, vol C-31, 1982 Sep, pp 913-917.
J. Muppala, “Performance and dependability modeling using stochastic
reward nets”, PhD ntesis, 1991 Apr; Duke Univ.
W. Sanders, “Construction and solution of performability models bas-
ed on stochastic activity networks”, PhD nesis , 1988; Univ. of Michigan.
B. Beyaert, G. Florin, P. Lonc, S. Natkin, “Evaluation of computer
system dependability using stochastic Petri nets”, Digest I l f h Ann.
Symp. Fault-Tolerant Computing, 1981 Jun, pp 79-81; IEEE Computer
Society Press.
H. Kantz, K. Trivedi, “Reliability modeling of MARS system: A case
study in the use of different tools and techniques”, Int ’1 Workshop Perri
Nets and Performance Models, 1991; Melbourne, Australia.
J. Muppala, A. Sathaye, R. Howe, K. Trivedi, “Dependability model-
ing of a heterogenous VAXcluster system using stochastic reward nets”,
Hardware & Sofnare Fault Tolerance in Parallel Compu ring Systems
(D. Averesky, Ed), 1992; Ellis Horwood Ltd.
G. Ciardo, A. Blakemore, P. F. Chimento, et al, “Automated genera-
tion and analysis of Markov reward models using stochastic reward nets”,
Linear Algebra, Markov Chains, Queueing Models, IMA Volumes in
Mathematics and its Applications (C. Meyer & R.J. Plemmons, Eds),
vol 48, 1993, pp 145-191; Springer-Verlag.
G. Ciardo, J . Muppala, K. Trivedi, “SPNP: Stochastic Petri net
package”, Proc. Int ‘1 Workshop Petri Nets and Performance Models,
1989 Dec, pp 142-150; IEEE Computer Society Press.
G. Chiola, “A software package for the analysis of generalized stochastic
Petri nets”, Proc. Int’l Workshop Timed Petri Nets, 1985 Jul; Torino,

& SRN result in the same model specification. Italy.

IEEE TRANSACTIONS ON RELIABILITY, VOL. 44, NO. 3, 1995 SEPTEMBER 140

[14] M. Malhotra, K. Trivedi, “Power-hierarchy among dependability model
types”, IEEE Trans. Reliubility, vol43, 1994 Sep, pp 493-502.

[151 J. h n a u l t , J. Roberts, ReliabilityandMainraiMbilityofElectronicSysremr,
1980; Computer Science Press.

[I61 B. Dhillon, C. Singh, “Bibliography literature on fault-trees”, Microelec-
tronics & Reliubiliry, vol 17, 1978, pp 501-503.

[17] M. Balakrishnan, K. Trivedi, “Stochastic Petri nets for reliability analysis
of communication network applications with alternate muting”, Reliability
Eng ’g and System Safety, 1995, (to be published).

[18] J. Muppala, G. Ciardo, K. Trivedi, “Stochastic reward nets for reliability
prediction”, Comm. Reliability, Maintainability Serviceability, vol 1 , num

[19] L. Tomek, J. Muppala, K. Trivedi, “Modeling correlation in software
recovery blocks”, IEEE Trans. Sofrware Engineering, vol 19, 1993, num

[20] J. Peterson, P e ~ N e r ~ o ~ a n d t h e M o d e l i n g o f S y s r a s , 1981; Prentice-Hall.
[21] H. Choi, V. Kulkarni, K. Trivedi, “Markov regenerative stochastic Petri

nets”, Performance Evaluation, vol20, 1994, pp 337-357.
[22] M. Malhotra, J. Muppala, K. Trivedi, “Stiffnewtolerant methods fortran-

sient analysis of stiff Markov chains”, Microelectronics & Relibbility, vol
34, num 11, 1994, pp 1825-1841.

[23] M. Malhotra, “A computationally efficient technique for transient analysis
of repairable Markovian systems”, Performance Evaluation, 1996, (to

[24] W. Stewart, “A comparison of numerical techniques in Markov modeling”,
Comm. ACM, vol21, 1978 Feh, pp 144-152.

[25] J . Dugan, S. B a w , M. Boyd, “Dynamic fault-tree models for fault-tolerant

2, 1994, pp 9-20.

11, pp 1071-1086.

appear).

AUTHORS

Dr. M. Malhotra; AT&T Bell Labs; Holmdel, New Jersey 07733 USA.
Manish Malhotra received BTech (1989) in Computer Science from In-

dian Institute of Technology, Delhi, and MS (1990) and PhD (1993) from Duke
University in Computer Science. Since 1993 June, he has been a member of
technical staff at AT&T Bell Labs, Holmdel. His interests include reliability
& performability modeling of telecommunication networks & services.

Dr. K.S. Trivedi; Dept. of Electrical Engineering; Duke University; Durham,
North Carolina 27706 USA.

Kishor S. Trivedi received the B.Tech from the Indian Institute of
Technology, Bombay, and MS & PhD in Computer Science from the Univer-
sity of Illinois, Urbana-Champaign. He is the author of Probability and Srarisrics
with Reliability, Queuing and Computer Science Applications. His research in-
terests are in computer & communication system reliability & performance
modeling. He has lectured & published extensively on these topics. He is an
IEEE Fellow. He is a Professor of Electrical Engineering at Duke University,
and the director of a joint NSF, Duke, NC State IndustryKJniversity Cooperative
Research Center for Advanced Computing & Communication. He has served
as a Principal Investigator on various AFOSR, ARO, Burroughs, IBM, DEC,
NASA, NIH, ONR, NSWC, Boeing, Union Switch & Signals, NSF, and SPC
funded projects and as a consultant to industry and research laboratories. He
was an Editor of IEEE Trans. Computers from 1983-1987. He is a co-designer
of HARP, SAVE, SHARPE and SPNP modeling packages. These packages
have been widely circulated.

computer systems”, IEEE Trans. Reliability, vol41, 1992 Sep, pp 363-377.
1261 J. Duaan, K. Trivedi, M. Smotherman, R. Geist, “The hybrid automated Manuscript received 1994 September 6. _ _

reliability predictor”, AIAA J. Guidnnce, Control, L?vmics, 1986, May-
Jun, pp 319-331. IEEE Log Number 94-12417 4 T R b

.4RUMS ARUMS A R U M S A R U M S A R U M S A R U M S A R U M S ARUMS A R U M S ARWMS A R U M S A R U M S ARUMS

1995 Annual Reliability and Maintainability Symposium

The Alan 0. Plait Award for Tutorial Excellence
was bestowed upon was bestowed upon

Lawrence M. Leemis, PhD
for Best Tutorial

A. (Gus) Constantinides
for Continued Excellence

“Probabi l is t ic-Models & ‘
Statist ical-Methods in Reliability”

Basic Reliability”

These awards are named for Alan 0. Plait who instituted and took charge of the Tutorials program in 1975,
and then guided and encouraged its growth for 17 years. Each tutorial is rated by attendees and the Tutorial
Committee according to its presentation content, visual materials, speaker elocution. and printed text. The
number of years a tutorial has been presented is an additional criterion for the Continued Excellence award.

