
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights


Author's personal copy

System resiliency quantification using non-state-space and state-space
analytic models$

Rahul Ghosh a,n, DongSeong Kim b, Kishor S. Trivedi c

a IBM Software Group, Durham, NC 27703, USA
b Department of Computer Science and Software Engineering, University of Canterbury, Christchurch 8140, New Zealand
c Department of Electrical and Computer Engineering, Duke University, NC 27708, USA

a r t i c l e i n f o

Article history:

Received 20 October 2011

Received in revised form

22 November 2012

Accepted 23 December 2012
Available online 6 February 2013

Keywords:

Analytic models

Changes

Design envelope

Non-state-space models

Resiliency

State-space models

a b s t r a c t

Resiliency is becoming an important service attribute for large scale distributed systems and networks.

Key problems in resiliency quantification are lack of consensus on the definition of resiliency and

systematic approach to quantify system resiliency. In general, resiliency is defined as the ability of

(system/person/organization) to recover/defy/resist from any shock, insult, or disturbance [1]. Many

researchers interpret resiliency as a synonym for fault-tolerance and reliability/availability. However,

effect of failure/repair on systems is already covered by reliability/availability measures and that of on

individual jobs is well covered under the umbrella of performability [2] and task completion time

analysis [3]. We use Laprie [4] and Simoncini [5]’s definition in which resiliency is the persistence of

service delivery that can justifiably be trusted, when facing changes. The changes we are referring to

here are beyond the envelope of system configurations already considered during system design, that

is, beyond fault tolerance. In this paper, we outline a general approach for system resiliency

quantification. Using examples of non-state-space and state-space stochastic models, we analyti-

cally–numerically quantify the resiliency of system performance, reliability, availability and perform-

ability measures w.r.t. structural and parametric changes.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

For large scale commercial systems (e.g., telephone networks,
cloud), resiliency is a key feature to achieve the requirements set
by service level agreements. This paper presents a general
approach for resiliency quantification of such systems using both
non-state-space and state-space analytic models. Two key pro-
blems in performing such analysis are: (1) lack of consensus on
the definition of resiliency and (2) lack of systematic approach for
quantifying the system resiliency measures. The term resiliency is
used in many different fields and its definitions are diverse. In
general, resiliency can be defined as the ability of (system/person/
organization) to recover/defy/resist from any shock, insult, or
disturbance [1]. Dearnley [6] defined resiliency of database
systems as the ability to return to a previous state after the
occurrence of some event or action which may have changed that
state. The terms related to the concept of resiliency are privacy,

security and integrity. Najjar et al. [7] defined network resiliency
as the probability of no disconnection in a family of regular graph
network topologies. Resiliency is also used in other application
domains such as aviation systems [8], cryptographic protocols [9],
network subject to failures [10,11,7,12], computer network [13]
and content distribution networks (CDN) under distributed denial
of service (DDoS) attacks [14], wireless sensor networks [15],
water resources systems [16], and data center [17]. Many
researchers interpret resiliency as a synonym for fault-tolerance
but the effects of using fault tolerance can be captured by
traditional dependability measures such as reliability, availability,
maintainability, safety and so on. DeBardeleben et al. [18] defined
resiliency as the ability of a system to keep applications running
and maintain an acceptable level of service in the face of
transient, intermittent, and permanent faults. However, the effect
of failure/repair on systems is fully covered by reliability/avail-
ability measures and on individual jobs is well covered under
the umbrella of performability [2] and task completion time
analysis [3]. Engelman et al. [19] proposed to use fundamental
models (reliability and performance modeling) and resiliency
supporting models (such as failure prediction, checkpointing,
rejuvenation scheduling, etc.) to model and improve resiliency
of high performance computing (HPC). Sterbenz et al. [20] defined
resiliency as the combination of trustworthiness (dependability,
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security, and performability) and tolerance (survivability, disrup-
tion tolerance, and traffic tolerance). There are demands to
establish standards for resiliency in taxonomy, mechanisms and
models [21]. Among many definitions, we use Laprie [4] and
Simoncini [5]’s definition in which resiliency is the persistence of
service delivery that can justifiably be trusted, when facing
changes. We use this notion of change(s) in resiliency quantifica-
tion. Changes can be: (i) increase/decrease in workload/faultload,
(ii) increase/decrease in system capacity, (iii) change in system
structure/configuration, (iv) occurrence of security attacks and
(v) occurrence of accidents and disasters (e.g., earthquakes, flooding).
Note that changes in system states due to dynamic redundancy
features such as failure detection followed by (automated) reconfi-
guration are already included in traditional fault-tolerance and
reliability/availability. The change we are referring to here is beyond
the envelope of system configuration already considered during
system design, i.e., beyond fault-tolerance.

Clearly, notion of resiliency should be beyond fault-tolerance and
reliability/availability/performability. We view it as the transient
system behavior after the change occurs; not just the steady state
system behavior before and after the change. Resiliency quantifica-
tion of performance and dependability attributes of systems can be
carried out by using model representation techniques such as:
(i) non-state-space models (e.g., reliability block diagrams, fault
trees), (ii) state-space models (e.g., continuous time Markov chains
(CTMC), stochastic Petri nets), (iii) hierarchical and fixed-point
iterative models, (iv) simulation and hybrid models [22,23], among
others [24]. In this paper, we extend our previous work [25] in
several ways: (i) showing resiliency quantification for composite
performability state-space model, (ii) quantifying resiliency of
system reliability using phased-mission system (PMS) analysis for
non-state-space models and (iii) analyzing the transient impacts of
both parametric and structural changes. We present general steps
for resiliency quantification using stochastic analytic models and
subsequently describe how this approach can be applied for two real
system examples: (a) emergency core cooling system (ECCS) of a
boiler water reactor (BWR) and (b) a telephone switching system.
For the ECCS, we quantify resiliency of system reliability using non-
state-space models when parametric and structural changes are
applied. For the telephone switching system, we quantify resiliency
of performance, availability and performability measures when
parametric changes are applied.

Rest of the paper is organized as follows. Section 2 describes a
traditional reliability model using a fault tree and traditional
performance, availability and performability models using con-
tinuous time Markov chains (CTMC). In Section 3, we show how
resiliency analysis is different from the traditional dependability
analysis and describe the general steps for resiliency quantifica-
tion. Numerical results for resiliency quantification of real case
studies are also presented in Section 3. Finally, we conclude this
work and outline future avenues of research in Section 4.

2. Traditional performance and dependability analysis

We describe performance, reliability, availability and perform-
ability models for real system examples using both non-state-
space and state-space models. All models are exercised in SHARPE
(Symbolic Hierarchical Automated Reliability and Performance
Evaluator) [26] and numerical results are shown for different
output measures.

2.1. Reliability analysis using non-state-space model

We analyze the reliability of emergency core cooling system
(ECCS) of a boiling water reactor (BWR) using a fault tree [27].

A detailed physical description of the fault tree can be found in
[27]; while a simplified version is described in [28]. Fig. 1 shows
the fault tree of the ECCS under normal conditions.

Model output: From Fig. 1, reliability of the overall system is
given by

Reccs ¼ 1�Pr½A \ ðB [ ðC \ D \ E \ F ÞÞ� ð1Þ

where, X¼1 ðXAfA,B,C,D,E,FgÞ denotes the event that the compo-
nent X is up.

Numerical results: Solution methods for such fault tree models
have been implemented in many software packages such as
SHARPE [26]. Fig. 2 shows reliability of ECCS as a function of
time, under normal conditions. Mean time to failure (MTTF) of
each component was assumed to be 1000 h. SHARPE input file for
reliability analysis of ECCS is shown in Fig. 3.

Fig. 1. Fault tree of emergency core cooling system (ECCS) of a boiling water

reactor (BWR).
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Fig. 2. Reliability of ECCS under normal conditions.
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2.2. Performance, availability and performability analysis

using state-space models

We consider a telephone switching system consisting of
n channels [29]. This sub-section describes analytic models
for performance, availability and performability measures. We
describe the mathematical details to obtain the steady state and
transient measures from these models and use SHARPE to show
numerical results.

2.2.1. Performance model

We assume that the call arrival process is homogenous Poisson
with rate l. Call service times are assumed to be independent and
exponentially distributed with rate m. The performance model is
then a homogenous CTMC as shown in Fig. 4. State index k of the
CTMC in Fig. 4 denotes the number of busy channels. Steady state
probability vector p for the CTMC in Fig. 4 is denoted by

p¼ ½p0,p1, . . . ,pn� ð2Þ

Let the generator matrix of the CTMC in Fig. 4 be Q perf . After
solving the system of linear equations

pQ perf ¼ 0 ð3Þ

with
Pn

k ¼ 0 pk ¼ 1, we can compute the steady state probabilities.
Let the transient state probability vector pðtÞ of the CTMC in Fig. 4
be denoted by

pðtÞ ¼ ½p0ðtÞ,p1ðtÞ, . . . ,pnðtÞ� ð4Þ

and the time derivative of the transient state probability vector by

dpðtÞ
dt
¼

dp0ðtÞ

dt
,
dp1ðtÞ

dt
, . . . ,

dpnðtÞ

dt

� �
ð5Þ

Then, the Kolmogorov differential equation for transient analysis
can be written as

dpðtÞ
dt
¼ pðtÞQ perf ð6Þ

with the initial state probability vector

pð0Þ ¼ ½p0ð0Þ,p1ð0Þ, . . . ,pnð0Þ� ð7Þ

By solving Eq. (6) with the initial state probability vector in
Eq. (7), we can obtain the transient state probabilities.

Model outputs: Different performance measures can be com-
puted using the Markov reward approach [29]. Using a reward
rate rk for state k, we can compute the steady state performance
measure as steady state expected reward rate, given by:Pn

k ¼ 0 rkpk. Similarly, transient performance measure can be

computed as:
Pn

k ¼ 0 rkpkðtÞ. In this paper, we focus only on call
blocking probability. When all n channels are busy, an incoming
call will be blocked. This is represented by state n and call
blocking probability is given as the probability of being in state
n. Thus, by assigning a reward rate of 1 to state n and a reward
rate 0 to all other states, steady state and transient call blocking
probabilities can be obtained as pn and pnðtÞ respectively.

Numerical results: Fig. 5 shows the transient call blocking
probability of a switching system with 50 channels. We assumed
that at t¼0, no channels were busy. Keeping the call arrival rate
same (l¼ 100 calls=h), we show the effects of varying call service
rates (m¼ 2 and 2.5 calls/h) on call blocking probability. SHARPE
input file for transient performance analysis of switching system
is shown in Fig. 6.

2.2.2. Availability model (without fault detection/reconfiguration

delay)

Availability model takes into account failure–repair behavior
of the channels. We assume that times to channel failure and

Fig. 3. SHARPE input file for reliability analysis of ECCS (Fig. 2), under normal conditions.

Fig. 4. Performance model of telephone switching system.
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Fig. 5. Transient call blocking probability of the telephone switching system.
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repair are exponentially distributed with mean 1=g and 1=t
respectively. After a channel failure, repair of the failed channel
is started immediately (i.e., with instantaneous fault detection).
We also assume that a single repair facility is shared by all the
channels. The availability model is then a homogenous CTMC as
shown in Fig. 7. State index k of the CTMC in Fig. 7 denotes the
number of non-failed channels. Steady state probability vector /

for the CTMC in Fig. 7 is denoted by

/¼ ½f0,f1, . . . ,fn� ð8Þ

Generator matrix for the CTMC in Fig. 7 is denoted by Q avail. After
solving the system of linear equations

/Q avail ¼ 0 ð9Þ

with
Pn

k ¼ 0 fk ¼ 1, we can compute the steady state probabilities.
Transient state probability vector /ðtÞ for the CTMC in Fig. 7 is
given by

/ðtÞ ¼ ½f0ðtÞ,f1ðtÞ, . . . ,fnðtÞ� ð10Þ

and the time derivative of the transient state probability vector by

d/ðtÞ

dt
¼

df0ðtÞ

dt
,
df1ðtÞ

dt
, . . . ,

dfnðtÞ

dt

� �
ð11Þ

Thus, the Kolmogorov differential equation for transient analysis
as

d/ðtÞ

dt
¼/ðtÞQ avail ð12Þ

with the initial state probability vector

/ð0Þ ¼ ½f0ð0Þ,f1ð0Þ, . . . ,fnð0Þ� ð13Þ

By solving Eq. (12) with the initial state probability vector in Eq.
(13), we can compute the transient state probabilities.

Model outputs: Using Markov reward approach as described
earlier, we can compute different steady state and transient
measures from the availability model. In this paper, we only
focus on switching system unavailability. When all n channels
have failed, the system will be unavailable to a new incoming call.
This is represented by state 0 and unavailability is given as the
probability of being in state 0. Thus, by assigning a reward rate
1 to state 0 and reward rate 0 to all other states, steady state and

transient unavailability can be obtained as f0 and f0ðtÞ

respectively.
Numerical results: Fig. 8 shows the transient unavailability of a

switching system with 50 channels. We assumed that at t¼0, all
channels were ‘UP’. Keeping the mean time to failure (MTTF) of a
channel fixed (1=g¼ 100 h), we show the effects of varying mean
time to repair (MTTR) (1=m¼ 24 and 36 h) on unavailability.
SHARPE input file for this analysis is shown in Fig. 9.

2.2.3. Availability model (with fault detection/reconfiguration delay)

Availability model shown in Fig. 7 was developed under the
assumption that a fault in switching system is detected instanta-
neously and repair process starts immediately after the failure.

Fig. 6. SHARPE input file for transient performance analysis of switching system.

n
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Fig. 7. Availability model of switching system without fault detection/reconfiguration delay.
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Fig. 8. Transient unavailability of switching system (without fault detection/
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This assumption is relaxed in the availability model shown in
Fig. 10. We assume, there are n channels and MTTF of a channel is
1=g. After a channel failure, the system goes to a detection/
reconfiguration state, denoted by Sk, where k is the number of
non-failed channels before the system goes to detection/reconfi-
guration state. Time to fault-detection/reconfiguration is assumed
to be exponentially distributed with mean 1=d. After detection/
reconfiguration, channel failure is either recovered with prob-
ability c (coverage factor) or the fault stays within the system
with probability ð1�cÞ. A failed channel which cannot be recov-
ered by detection/reconfiguration is finally repaired with MTTR
1=t. Steady state probability vector w for the CTMC in Fig. 10 is
denoted by

w¼ ½cn,cSn
, . . . ,c0� ð14Þ

Generator matrix for the CTMC in Fig. 10 is denoted by Q a_detect .
After solving the system of linear equations

wQ a_detect ¼ 0 ð15Þ

with
Pn

k ¼ 0 ckþ
Pn

k ¼ 1 cSk
¼ 1, we can compute the steady state

probabilities. Let the transient state probability vector wðtÞ of the
CTMC in Fig. 10 be denoted by

wðtÞ ¼ ½cnðtÞ,cSn
ðtÞ, . . . ,c0ðtÞ� ð16Þ

and the time derivative of the transient state probability vector by

dwðtÞ

dt
¼

dcnðtÞ

dt
,
dcSn
ðtÞ

dt
, . . . ,

dc0ðtÞ

dt

� �
ð17Þ

Then, the Kolmogorov differential equation for transient analysis
is

dwðtÞ

dt
¼wðtÞQ a_detect ð18Þ

with the initial state probability vector wð0Þ

wð0Þ ¼ ½cnð0Þ,cSn
ð0Þ, . . . ,c0ð0Þ� ð19Þ

By solving Eq. (18) with the initial state probability vector in
Eq. (19), we can compute the transient state probabilities.

Model outputs: Using Markov reward approach as described
earlier, we can compute steady state and transient unavailability.
We assume that detection/reconfiguration states are considered
to be down if the sojourn times in those states, are longer than a
pre-defined threshold tth. In a detection/reconfiguration state,
probability that the sojourn time is longer than tth is given by
e�dtth . So, we assign reward rate e�dtth to the detection/reconfi-
guration states, reward rate 1 to state 0 and reward rate 0 to all
other states. Thus, steady state unavailability is given by

UAa_detect ¼ e�dtth

Xn

k ¼ 1

cSk
þc0 ð20Þ

Transient unavailability is given by

UAa_detectðtÞ ¼ e�dtth

Xn

k ¼ 1

cSk
ðtÞþc0ðtÞ ð21Þ

Numerical results: Fig. 11 shows the transient unavailability of
a 50 channel switching system with fault detection/reconfigura-
tion delays. We assumed that at t¼0, all channels were ‘UP’.
Keeping the channel MTTF (1=g¼ 100 h), MTTR (1=t¼ 24 h) and
mean detection/delay (1=d¼ 5 s) fixed, we show the effects of
varying tth (tth¼1 and 10 s) on unavailability. Coverage factor c

was assumed to be 0.95. SHARPE input file for this analysis is
shown in Fig. 12.

2.2.4. Performability model (without fault detection/reconfiguration

delay)

Performability model takes into account both performance and
failure–repair behavior of the channels. We assume that time to
failure of a channel is exponentially distributed with rate g.
Channel fault is detected instantaneously and a failed channel is
repaired with rate t. Inter-arrival times and service times of a call
are exponentially distributed with rates l and m respectively. The
performability model is then a homogenous CTMC as shown in
Fig. 13. State index of the CTMC in Fig. 13 is denoted by (i,j),
where i is the number of non-failed channels and jðr iÞ denotes

Fig. 9. SHARPE input file for transient availability analysis of switching system (w/o detection/reconfiguration delay).

n

n n-1 n-2 n-k 0… …

n kn
Sn

c

c

n
Sn-1
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c c c c
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c

c

Fig. 10. Availability model of switching system with fault detection/reconfiguration delay.
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the number of ongoing calls in the system. Note that channels
which are in use as well as those which are free can fail with
corresponding failure rates. Steady state probability vector h for
the CTMC in Fig. 13 is denoted by

h¼ ½yð0,0Þ,yð1,0Þ, . . . ,yðn,nÞ� ð22Þ

After solving the system of linear equations

hQ perform ¼ 0 ð23Þ

with
Pn

i ¼ 0

Pi
j ¼ 0 yði,jÞ ¼ 1, we can compute the steady state

probabilities. Transient state probability vector hðtÞ for the CTMC
in Fig. 13 is denoted by

hðtÞ ¼ ½yð0,0ÞðtÞ,yð1,0ÞðtÞ, . . . ,yðn,nÞðtÞ� ð24Þ

After solving the system of equations

dhðtÞ

dt
¼ hðtÞQ perform ð25Þ

with the initial condition

hð0Þ ¼ ½yð0,0Þð0Þ,yð1,0Þð0Þ, . . . ,yðn,nÞð0Þ� ð26Þ

we can compute the transient state probabilities.
Model outputs: Two key measures from the performability

model are: (i) total call blocking probability and (ii) total call
dropping probability. We can compute the steady state and
transient values of call blocking and dropping probabilities using
Markov reward approach. To compute blocking probability,
we attach a reward rate 1 to states of the form ði,iÞ and reward
rate 0 is assigned to all other states. Values of steady state
and transient call blocking probabilities are:

Pn
i ¼ 0 yði,iÞ andPn

i ¼ 0 yði,iÞðtÞ respectively. To compute dropping probability, we
attach a reward rate ðjg=lÞ to state ði,jÞ. Values of steady state and
transient call dropping probabilities are:

Pn
i ¼ 0

Pi
j ¼ 0ðjg=lÞyði,jÞ

and
Pn

i ¼ 0

Pi
j ¼ 0ðjg=lÞyði,jÞðtÞ respectively.

Numerical results: Fig. 14(a) and (b) respectively shows the
transient call blocking and dropping probabilities of a switching
system with five channels, in the presence of failure and repair.
We assumed that at t¼0, no channels were busy and all channels
were ‘UP’. MTTF and MTTR of a channel were assumed to be
1000 h and 24 h respectively. Keeping the call arrival rate fixed
(l¼ 10 calls=h), we show the effects of varying call service rates
(m¼ 2 and 2.5 calls/h) on call blocking and dropping probabilities.
SHARPE input file for this analysis is shown in Fig. 15.

2.2.5. Performability model (with fault detection/reconfiguration

delay)

Fig. 16 shows the CTMC of performability model with a non-
zero fault detection/reconfiguration delay. State indices of the
CTMC in Fig. 16 are denoted by: (a) (i,j), where i is the number of
non-failed channels and jðr iÞ denotes the number of ongoing
calls in the system and (b) (Sp,q), where p is the number of non-
failed channels before the system goes to detection/reconfigura-
tion state and q is the number of ongoing calls. In detection/
reconfiguration state, we assume that a new call is not accepted.
Call arrival and service rates are assumed to be l and m
respectively. Channel failure and repair rates are assumed to be
g and m respectively. Rate of fault detection/reconfiguration is
assumed to be d. A detected fault can be recovered with prob-
ability c. Steady state probability vector x for the CTMC in Fig. 16
is denoted by

x¼ ½oð0,0Þ,oðS1 ,0Þ, . . . ,oðn,nÞ� ð27Þ

Fig. 12. SHARPE input file for transient availability analysis of switching system (with detection/reconfiguration delay).
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Fig. 11. Transient unavailability of switching system (with fault detection/

reconfiguration delay).
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After solving the system of linear equations

xQ pa_detect ¼ 0 ð28Þ

with

Xn

i ¼ 0

Xi

j ¼ 0

oði,jÞ þ
Xn

p ¼ 1

Xp�1

q ¼ 0

oðSp ,qÞ ¼ 1

we can compute the steady state probabilities. Transient state
probability vector xðtÞ for the CTMC in Fig. 16 is denoted by

xðtÞ ¼ ½oð0,0ÞðtÞ,oðS1 ,0ÞðtÞ, . . . ,oðn,nÞðtÞ� ð29Þ

After solving the system of equations

dxðtÞ
dt
¼xðtÞQ pa_detect ð30Þ

with the initial condition

xð0Þ ¼ ½oð0,0Þð0Þ,oð1,0Þð0Þ, . . . ,oðn,nÞð0Þ� ð31Þ

we can compute the transient state probabilities.
Model outputs: Steady state call blocking probability is given

by

Tb_detect ¼
Xn

i ¼ 0

oði,iÞ þ
Xn

p ¼ 1

Xp�1

q ¼ 0

oðSp ,qÞ ð32Þ

***************
****
***
**
**
**
**
**
**
**
**
**
**
**
**
**
***
***
***
***
***
****
****
*****
******
*******
*********
**************

*********************************
********************************************************************************************************************************************************************************************************************************************************************************************************************************************************************

0 1 2 3 4 5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Transient call blocking probability
(w/o detection/reconfiguration)

time (hr)

B
lo

ck
in

g 
pr

ob
ab

ili
ty

ooooooooooooooo
oooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
oooo
oooo
oooo
ooooo
oooooo
oooooooo
ooooooooooo

ooooooooooooooooooo
ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

*
o

service rate = 2 calls/hr
service rate = 2.5 calls/hr **

**
**
**
**
**
**
**
**
**
**
**
**
**
***
***
***
***
****
****
*****
******
*******
*********
**************

**********************************
******************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************

0 1 2 3 4 5

0.
00

00
0

0.
00

01
0

0.
00

02
0

0.
00

03
0

Transient call dropping probability
(w/o detection/reconfiguration)

time (hr)

C
al

l d
ro

pp
in

g 
pr

ob
ab

ili
ty

oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
ooo
ooo
ooo
ooo
oooo
oooo
ooooo
oooooo
ooooooo
oooooooooo
ooooooooooooooooo

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

*
o

service rate = 2 calls/hr
service rate = 2.5 calls/hr

Fig. 14. (a) Transient call blocking probability and (b) transient call dropping probability of switching system from performability model (without detection/

reconfiguration delay).

Fig. 13. Performability model of switching system (without fault detection/reconfiguration delay).
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Transient call blocking probability is given by

Tb_detectðtÞ ¼
Xn

i ¼ 0

oði,iÞðtÞþ
Xn

p ¼ 1

Xp�1

q ¼ 0

oðSp ,qÞðtÞ ð33Þ

Steady state call dropping probability is given by

Td_detect ¼
Xn

i ¼ 0

Xi

j ¼ 0

ðjg=lÞoði,jÞ ð34Þ

Transient call dropping probability is given by

Td_detectðtÞ ¼
Xn

i ¼ 0

Xi

j ¼ 0

ðjg=lÞoði,jÞðtÞ ð35Þ

Numerical results: Fig. 17(a) and (b) shows respectively the
transient call blocking and dropping probabilities of a switching
system with five channels, in the presence of failure and repair.
We assumed that at t¼0, no channels were busy and all channels
were ‘UP’. MTTF and MTTR of a channel were assumed to be
1000 h and 24 h respectively. Keeping the call arrival rate fixed

(l¼ 10 calls=h), we show the effects of varying call service rates
(m¼ 2 and 2.5 calls/h) on call blocking and dropping probabilities.
SHARPE input file for this analysis is shown in Fig. 18.

3. Proposed resiliency quantification approach

We outline the general steps for resiliency quantification of a
system:

(1) Construct a stochastic analytic model of a given system to
find measure(s) of interest. Example of such a model can be
performance, reliability, availability or performability model of
the system.

(2) Determine the system measures of interest under normal
conditions from the model developed in step (1) above. In this
step, we compute transient or steady state values of measures of
interest, without any application of changes.

(3) Apply change(s) to the system. Changes can be classified
into two broad categories: (a) parametric changes and (b) struc-
tural changes. Parametric changes can be enforced by increasing

Fig. 15. SHARPE input file for transient performability analysis (w/o detection/reconfiguration delay).

R. Ghosh et al. / Reliability Engineering and System Safety 116 (2013) 109–125116



Author's personal copy

(or decreasing) the value(s) of input parameter(s) of the model.
Examples of such changes are variation of call arrival rates, hard-
ware/software failure rates. In case of state-space models, structural
changes can be enforced by adding (or removing) states and/or
transitions in the model. In case of non-state-space model, such as
ECCS, an example of structural change is a change in system
configuration (the logic model).

(4) Analyze the transient behavior of the system model to
compute the transient measures after applying the change(s).
Initial probabilities for this transient analysis are obtained from
the steady state/transient probabilities as computed from the
normal behavior of the system model in the step (2). After the
change is applied, transient response of the performance,

reliability, availability and performability measures quantify the
resiliency of the system.

We explain how this approach can be applied for the ECCS and
the telephone switching system examples. Reliability model of
ECCS and performance, availability and performability models of
switching system have been already shown in Section 2. In this
section, we show the mathematical steps for resiliency quantifi-
cation. For ECCS, we show the impact of both parametric and
structural changes while for the telephone switching system, we
focus only on parametric changes. For mathematical convenience,
we summarize meanings of different superscripts in Table 1, as
used in rest of the paper. We use SHARPE [26], to obtain the
numerical results.
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Fig. 16. Performability model of switching system (with fault detection/reconfiguration delay).
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Fig. 17. (a) Transient call blocking and (b) transient call dropping probability from performability model (with detection and reconfiguration).
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3.1. Resiliency quantification for ECCS

To quantify resiliency of ECCS, we map the problem onto what
is known as phased-mission system (PMS) model in the reliability
literature [27,28]. In a PMS model, a system carries out a specific
mission which can be divided into consecutive time periods
(phases). In each phase, the system needs to accomplish a specific
task and the system configuration, the phase duration, and

failure/repair rates of the hardware/software components may
change from phase to phase. Such changes in system configura-
tion (i.e., structural change) and/or in component failure/repair
rates (i.e., parametric change) make the PMS model convenient
for resiliency analysis. We describe resiliency quantification of
ECCS reliability under parametric and structural changes.

In the PMS model, cumulative distribution function (CDF) of
time to failure of a component Kj in the pth phase can be written

Fig. 18. SHARPE input file for transient performability analysis (w/detection/reconfiguration delay).

Table 1
Meanings of different superscripts used.

Superscripts Descriptions

‘param’ Denotes resiliency analysis with parametric changes; used in non-state-space reliability models

‘struct’ Denotes resiliency analysis with structural changes; used in non-state-space reliability models

‘o’ Old values of parameters, generator matrix, state probabilities before the change is applied; used in performance and availability models

‘w’ New values of parameters, generator matrix, state probabilities after the change is applied; used in performance and availability models

‘op’ Old value of call arrival rate, generator matrix, state probabilities before the change is applied; used in performability model for resiliency of blocking

probability

‘wp’ New value of call arrival rate, generator matrix, state probabilities after the change is applied; used in performability model for resiliency of blocking

probability
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as [28]

FKjp
ðtÞ ¼ 1� exp �

Xp�1

i ¼ 1

njiTi

 !" #
expð�njptÞ ð36Þ

where nji is the failure rate of component Kj in phase i, Ti is the
phase duration for phase i, tA ½0,Tp� and 1r irp. Observe that
FKjp
ðtÞ is the probability that the component Kj fails at some time

instant tf , where 0rtf rtþ
Pp�1

i ¼ 1 Ti. The probability mass at the
beginning of phase p is the probability that the component has
already failed at a time instant within first ðp�1Þ phases and is
given by setting t¼0 in the above formula. In Eq. (36), the term in
square bracket is the probability that the component Kj has
survived in the first ðp�1Þ phases.

While Eq. (36) provides the CDF of time to failure of individual
component in different phases, overall unreliability of the PMS
can be computed from sum of disjoint phase products (SDPP)
[28]. If PEi be the event that a PMS is down in phase i, overall
reliability of the PMS is given by

Rpms ¼ 1�Pr
[p

i ¼ 1

PEi

" #
ð37Þ

ECCS has three phases [27,28] and durations of three phases are
assumed to be T1, T2 and T3 respectively.

3.1.1. Resiliency quantification of ECCS reliability upon parametric

changes

Each phase of ECCS is represented through the fault tree
shown in Fig. 1. We quantify the resiliency of reliability of ECCS
w.r.t. the change in failure rate of component A. During phase 1,
let the failure rate of component A be na1

and let A
ðna1
Þ

1 ¼ 1 denote
the event that the component A is up in phase 1. We assume that
failure rates of other components remain same through all phases
and Xi ¼ 1ðXAfB,C,D,E,FgÞ denotes the event that the component
X is up in i-th phase. The event that the PMS is down in phase 1 is
given by

PEðparamÞ
1 ¼ Pr½A

ðna1
Þ

1 \ ðB1 [ ðC1 \ D1 \ E1 \ F1 ÞÞ� ð38Þ

In phase 2, we change the failure rate of component A to na2
. Let

A
ðna2
Þ

2 ¼ 1 denote the event that the component A is up in phase 2.
The event that PMS is down in phase 2, is given by

PEðparamÞ
2 ¼ Pr½A

ðna2
Þ

2 \ ðB2 [ ðC2 \ D2 \ E2 \ F2 ÞÞ� ð39Þ

In phase 3, we again bring back the failure rate of component A to
na1

. Let A
ðna1
Þ

3 ¼ 1 denote the event that the component A is up in
phase 3. The event that PMS is down in phase 3, is given by

PEðparamÞ
3 ¼ Pr½A

ðna1
Þ

3 \ ðB3 [ ðC3 \ D3 \ E3 \ F3 ÞÞ� ð40Þ

Thus, overall reliability of the system at the end of phase 3 is
given by

RðparamÞ
pms ¼ 1�Pr½PEðparamÞ

1

[
PEðparamÞ

2

[
PEðparamÞ

3 � ð41Þ

Observe that the CDF of time to failure of component A in third
phase is given by

FA3
ðtÞ ¼ 1�½expð�ðna1

T1þna2
T2ÞÞ�expð�na1

tÞ ð42Þ

Numerical results: Fig. 19 shows the reliability of ECCS with and
without parametric change. We assumed three phases and dura-
tion of each phase was 10 h. For parametric change, during the
three phases, MTTFs of component A were assumed to be:
(i) 1000 h during first phase (t¼0 to t¼10), (ii) 50 h during
second phase (t¼10 to t¼20) and (iii) 1000 h during third phase
(t¼20 to t¼30). In case of normal system behavior (without any
change), we assumed MTTF of A to be 1000 h during all three
phases (t¼0 to t¼30). Reliability of the system without

parametric change decreases smoothly whereas the reliability of
the system with parametric change drops sharply in the begin-
ning of second phase, when the change (increase in failure rate of
node A) is applied. SHARPE input file for resiliency analysis of
ECCS under parametric change is shown in Fig. 20.

3.1.2. Resiliency quantification of ECCS reliability upon structural

changes

ECCS can also have different fault tree structures during its
three phases [27,28] as shown in Fig. 21. We quantify the
resiliency of reliability of ECCS w.r.t. such structural changes.
We assume that failure rates of all components remain same
through all phases and Xi ¼ 1ðXAfA,B,C,D,E,F,G,HgÞ denotes the
event that the component X is up in ith phase. The event that the
PMS is down in phase 1, is given by

PEðstructÞ
1 ¼ Pr½A1 \ ðB1 [ ðC1 \ D1 \ E1 \ F1 ÞÞ� ð43Þ

The event that PMS is down in phase 2, is given by

PEðstructÞ
2 ¼ Pr½B2 [ ðX \ Y Þ� ð44Þ

where X ¼ G2 [ C2 [ ðD2 \ E2 \ A2 \ F2 Þ and Y ¼H2 [ D2[

ðC2 \ E2 \ A2 \ F2 Þ. The event that PMS is down in phase 3, is
given by

PEðstructÞ
3 ¼ Pr½ððG3 [ C3 Þ \ ðH3 [ D3 ÞÞ� ð45Þ

Thus, overall reliability of the system at the end of phase 3 is
given by

RðstructÞ
pms ¼ 1�Pr½PEðstructÞ

1

[
PEðstructÞ

2

[
PEðstructÞ

3 � ð46Þ

The computational algorithm for such expressions for PMS
models is developed in [28] and implemented in SHARPE; we
omit the details here.

Numerical results: Fig. 22 shows the reliability of ECCS with and
without structural change. We assumed three phases and dura-
tion of each phase was 10 h. Structural changes were applied at
ends of phase 1 (t¼10) and phase 2 (t¼20). In case of normal
system behavior (without any change), we assumed that fault
tree structure remained the same during all three phases (t¼0 to
t¼30) as shown in Fig. 21(a). Reliability of the system without
structural change decreases smoothly whereas the reliability of

Change applied

Fig. 19. Reliability of ECCS with and without parametric change.
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the system with structural change drops sharply when the change
is applied (t¼10 and t¼20). SHARPE input file for resiliency
analysis of ECCS under structural change is shown in Fig. 23.

3.2. Resiliency quantification for telephone switching system

3.2.1. Resiliency quantification of system performance measure

We quantify the resiliency of call blocking probability as
obtained from the performance model described in Fig. 4.

Study the normal behavior of the system before the change is

applied. We assume that, the initial call arrival rate is lðoÞ. Under
this condition, steady state probability vector pðoÞ for the CTMC in
Fig. 4 is denoted by

pðoÞ ¼ ½pðoÞ0 ,pðoÞ1 , . . . ,pðoÞn � ð47Þ

When l¼ lðoÞ, let the generator matrix of the CTMC be Q ðoÞperf . After
solving the system of linear equations

pðoÞQ ðoÞperf ¼ 0 ð48Þ

with
Pn

k ¼ 0 p
ðoÞ
k ¼ 1, we can compute the steady state probabil-

ities. Thus, steady state blocking probability (Pb) can be obtained
as the value of pðoÞn .

Apply a change to the system. Call arrival rate is set to lðwÞ.

Fig. 20. SHARPE input file for resiliency analysis of ECCS under parametric change.

Fig. 21. Fault trees of ECCS with different structures during three phases.

Fig. 22. Reliability of ECCS with and without structural change.
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Study the transient behavior of the system after the change is

applied. When l¼ lðwÞ, let the transient state probability vector
pðwÞðtÞ of the CTMC in Fig. 4 be denoted by

pðwÞðtÞ ¼ ½pðwÞ0 ðtÞ,p
ðwÞ
1 ðtÞ, . . . ,p

ðwÞ
n ðtÞ� ð49Þ

Let us denote the new generator matrix as Q ðwÞperf and the time
derivative of the transient state probability vector by

dpðwÞðtÞ
dt

¼
dpðwÞ0 ðtÞ

dt
,
dpðwÞ1 ðtÞ

dt
, . . . ,

dpðwÞn ðtÞ

dt

" #
ð50Þ

Thus, the Kolmogorov differential equation for transient analysis
is

dpðwÞðtÞ
dt

¼ pðwÞðtÞQ ðwÞperf ð51Þ

For this transient analysis, initial state probability vector is
obtained from the steady state probabilities before the change is
applied (l¼ lðoÞ). Thus, initial state probability vector is given by

pðwÞð0Þ ¼ ½pðoÞ0 ,pðoÞ1 , . . . ,pðoÞn � ð52Þ

By solving Eq. (51) with the initial probability vector in Eq. (52),
we compute the transient call blocking probability after the
change is applied.

Numerical results: Fig. 24 shows the resiliency of call blocking
probability of a switching system with 50 channels. At t¼0, call
arrival rate is changed from 80 calls/h to 100 calls/h. Call arrival
rate is again brought back to 80 calls/h at t¼5. Fig. 24 shows that
a switching system with higher service rate is more resilient as
the relative change in call blocking probability is lower when call
arrival rate is changed. SHARPE input file for Fig. 24 is shown in
Fig. 25.

3.2.2. Resiliency quantification of system availability (without fault

detection/reconfiguration delays)

We quantify the resiliency of unavailability as computed from
the CTMC in Fig. 7. Mathematically we describe resiliency analysis
built around this model.

Study the normal behavior of the system before the change is

applied. We assume that, initial channel failure rate is gðoÞ. Under
this condition, steady state probability vector /ðoÞ is first com-
puted in the usual way by solving the steady state balance
equations.

Apply a change to the system. Channel failure rate is set to gðwÞ.
Study the transient behavior of the system after the change is

applied. Now, the transient state probability vector /ðwÞðtÞ is
computed by solving the Kolmogorov differential equations with
the initial state probability vector /ðoÞ.

Numerical results: Fig. 26 shows the resiliency of unavailability
for a switching system with 50 channels. At t¼0, channel failure
rate is changed from 0.001/h to 0.01/h. Channel failure rate is

Fig. 23. SHARPE input file for resiliency analysis of ECCS under structural change.

hrcalls hrcalls

Change applied

Fig. 24. Resiliency of call blocking probability from performance model.
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again brought back to 0.001/h at t¼2000. Fig. 26 shows that a
switching system with higher repair rate is more resilient as the
relative change in unavailability is lower when channel failure
rate is changed. SHARPE input file for Fig. 26 is shown in Fig. 27.

3.2.3. Resiliency quantification of system availability (with fault

detection/reconfiguration delay)

We quantify the resiliency of unavailability as computed from
the CTMC in Fig. 10.

Study the normal behavior of the system before the change is

applied. We assume that, initial channel failure rate is gðoÞ. Under
this condition, steady state probability vector wðoÞ is computed by
solving the steady state balance equations. The steady state
unavailability is then computed by

UAðoÞa_detect ¼ e�dtth

Xn

k ¼ 1

cðoÞSk
þcðoÞ0 ð53Þ

Apply a change to the system. Channel failure rate is set to gðwÞ.
Study the transient behavior of the system after the change is

applied. Now, the transient state probability vector wðwÞðtÞ is
computed by solving the Kolmogorov differential equation with
the initial state probability vector wð0Þ.

Numerical results: Fig. 28 shows the resiliency of unavailability
with of a 50 channel switching system with fault detection/

Fig. 25. SHARPE input file for Fig. 24.

hr

Change applied

hr

Fig. 26. Resiliency of unavailability of switching system (without fault detection/

reconfiguration delays).
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reconfiguration delay. At t¼0, channel failure rate is changed
from 0.001/h to 0.01/h. Channel failure rate is again brought back
to 0.001/h at t¼0.1. MTTR of a channel was assumed to be 24 h
through out the entire period (t¼0 to t¼0.2). Fig. 28 shows that a
switching system with longer value of detection/reconfiguration
threshold ðtthÞ is more resilient as the relative change in unavail-
ability is lower when channel failure rate is changed.

3.2.4. Resiliency quantification of system performability measure

(without detection/reconfiguration delay)

We quantify the resiliency of total call blocking probability
from the performability model shown in Fig. 13. Mathematical
steps for such analysis are described here.

Study the normal behavior of the system before the change is

applied. We assume that, initial call arrival rate is lðopÞ. Steady
state probability vector hðopÞ is first computed by solving the
steady state balance equations. The steady state call blocking
probability is given by

Tb ¼
Xn

i ¼ 0

yðopÞ
ði,iÞ ð54Þ

Apply a change to the system. Call arrival rate is set to lðwpÞ.
Study the transient behavior of the system after the change is

applied. Now, the transient state probability vector hðwpÞ
ðtÞ is

computed by solving the Kolmogorov differential equations with
the initial state probability vector hðopÞ.

Numerical results: Fig. 29 shows the resiliency of total call
blocking probability from performability model with five chan-
nels. At t¼0, call arrival rate is changed from 5 calls/h to 10 calls/
h. Call arrival rate is again brought back to 5 calls/h at t¼5.
Through out our analysis, we assumed channel failure rate to be
0.001/h and mean repair time to be 24 h. Telephone switching
system with higher service rate is more resilient as the relative
change in call blocking probability is lower when call arrival rate
is increased.

3.2.5. Resiliency quantification of system performability measure

(with detection/reconfiguration delay)

We describe mathematical steps to quantify the resiliency of
total call blocking probability from the performability model
shown in Fig. 16.

Study the normal behavior of the system before the change is

applied. We assume that initial call arrival rate is lðopÞ. Steady state
probability vector xðopÞ for such condition is computed by solving
the steady state balance equations. The steady state call blocking
probability is given by

Tb_detect ¼
Xn

i ¼ 0

oðopÞ
ði,iÞ þ

Xn

p ¼ 1

Xp�1

q ¼ 0

oðopÞ
ðSp ,qÞ ð55Þ

Apply a change to the system. Call arrival rate is set to lðwpÞ.
Study the transient behavior of the system after the change is

applied. Now, the transient state probability vector xðwpÞðtÞ is

Fig. 27. SHARPE input file for Fig. 26.
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computed by solving the Kolmogorov differential equations with
the initial state probability vector xðopÞ.

Numerical results: Fig. 30 shows the resiliency of total call
blocking probability from performability model with five chan-
nels, when detection/reconfiguration delay is non-zero. At t¼0,
call arrival rate is changed from 5 calls/h to 10 calls/h. Call arrival
rate is again brought back to 5 calls/h at t¼5. Through out our
analysis, we assumed channel failure rate to be 0.001/h and mean
repair time to be 24 h. Telephone switching system with higher
service rate is more resilient as the relative change in call blocking
probability is lower when call arrival rate is increased.

4. Conclusions and future work

In this paper, we have presented a systematic approach for
resiliency quantification using non-state-space and state-space
based stochastic analytic models. We have shown the resiliency
of: (i) system reliability of emergency core cooling system (ECCS)
of a boiling water reactor (BWR) using non-state-space models
and (ii) system performance, availability and performability
measures of telephone switching system using state-space mod-
els. Impact of both structural and parametric changes on system
resiliency are shown. For the examples shown, computations of
different resiliency metrics, as described in our other work [30],
are left as future research.
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