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Abstract

The purpose of this paper is to describe an efficient Boolean algebraic algorithm that provides exact solution to the unreliability of a multi-
phase mission system where the configurations are described through fault trees. The algorithm extends and improves the Boolean method
originally proposed by Somani and Trivedi. By using the Boolean algebraic method, we provide an efficient modeling approach which avoids
the state space explosion and the mapping problems that are encountered by the Markov chain approach. To calculate the exact solution of the
phased-mission system with deterministic phase durations, we introduce the sum of disjoint phase products (SDPP) formula, which is a
phased-extension of the sum of disjoint products (SDP) formula. Computationally, the algorithm is quite efficient because it calls an SDP
generation algorithm in the early stage of the SDPP computation. In this way, the phase products generated in the early stage of the SDPP
formula are guaranteed to be disjoint. Consequently, the number of the intermediate phase products is greatly reduced. In this paper, we also
consider the transient analysis of the phased-mission system. Special care is needed to account for the possible latent failures at the mission
phase change times. If there are more stringent success criteria just after a mission phase change time, an unreliability jump would occur at
that time. Finally, the algorithm has been implemented in the software packagesharpe. With sharpe, the complexities of the phased-mission
system is made transparent to the potential users. The user can conveniently specify a phased-mission model at a high level (through fault
trees) and analyze the system quantitatively.q 1999 Elsevier Science Ltd. All rights reserved.

Keywords:Binary decision diagrams (BDD); Boolean algebraic methods; Cold/hot spares; Fault trees; Latent failure; Phased-mission systems;sharpe;
Software reliability; Software reusability; Transient analysis

Nomenclature

CFC common failure combinations
DPC disjoint phase constituent
DPP disjoint phase product
MPCT mission phase change time
PFC phase failure combinations
PMS phased-mission system
SDP sum of disjoint products
SDPP sum of disjoint phase products
Cji the event that componentCj fails during a time

period of durationTi

PEi the event describing the failure combinations (a set
of mincuts) for Phasei, 1 # i # p

Ti duration of Phasei
UR unreliability
p total number of phases

pe index of the last phase for evaluation, 1# pe # p
te evaluation time within Phasepe, 0 # te # Tpe

1. Introduction

Most reliability techniques and tools generally assume
that the systems being analyzed perform a single phased-
mission. With the increased use of automation in industries
such as aerospace, chemical, communication networks,
electronics, transportation and nuclear, phased-mission
system (PMS) analysis is being recognized as an appropriate
reliability analysis method for a large number of problems
[1]. Many systems perform a mission which can be divided
into consecutive time periods (phases). In each phase, the
system needs to accomplish a specific task. The system
configuration (the logic model), the phase duration, and
the failure rates of the components often vary from phase
to phase. We are interested in finding out the reliability/
unreliability of the system either at the end of the mission
or at any moment within the mission period.
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The existence of more than one phase in a phased-mission
system leads to some complexities which do not occur in a
single phased-system. The problem arises because the
models of different phases are dependent. The techniques
used to reflect this dependence distinguish different
approaches [2–10] employed for the analysis of PMS. For
example, in the Markov chain approach [2], the dependence
is reflected by assigning the state probabilities at the end of
one phase as the initial state probabilities for the immedi-
ately following phase. In the combinatorial approach [4], the
dependence can be accounted for by replacing a component
Cj in Phasei with a series of s-independent components
Cj;1;Cj;2;…; and Cj;i . Then the reliability block diagrams
(RBD) of different phases are connected in series to get
the equivalent single phased-system. Although the original
paper used RBDs, an equivalent fault tree approach can be
envisaged [1].

Both of the above approaches have advantages and draw-
backs. The advantage of the Markov chain approach is that
it can reflect the dynamic behavior such as transient fault
recovery. However, with the Markov approach, there is
generally a state space explosion problem. For a system
composed ofn components, we may need up to 2n states
to represent each phase. In addition, since configurations are
generally different from phase to phase, special care is
needed to map the up states from one phase to the up states
in the immediately following phase. The combinatorial
approach is conceptually simple, but its size grows with
the number of phases. This is due to the need to represent
the same component many times. An efficient way to
reduce the combinatorial explosion is to encode the Boolean
expressions of the fault trees by means of binary decision
diagrams (BDD) [11–13]. Recently, a PMS algorithm based
on BDD was proposed [14]. Considerable reduction in
computing and storage requirements is achieved through
this algorithm.

In this paper, we propose an algorithm to determine the
reliability of a PMS with deterministic phase durations. The
algorithm is based on a Boolean method originally proposed
by Somani and Trivedi [15] (ST algorithm). Our approach
involves the solution of multiple single-phased fault trees.
This is actually a divide and conquer strategy which is
computationally more efficient than the combinatorial
approach that combines the fault trees of all the phases
into a single fault tree with repeated events. Our methodol-
ogy also avoids the problems (state space explosion and
mapping) faced by the Markov approach. In addition, the
algorithm is general enough to apply to a wide range of
problems. For example, the algorithm can handle repeated
components, dormant components ork-out-of-n gates in
some phases. These features are very important for the relia-
bility analysis of ultra-reliable systems. For convenience
and clear reference, we refer to our algorithm as the MT
algorithm.

To calculate the unreliability of a PMS, we introduce the
sum of disjoint phase products (SDPP) formula, which is a

phased-extension of the sum of disjoint products (SDP)
formula. The MT algorithm is based on the SDPP formula.
We show that the original ST algorithm is also based on
SDPP. Consequently, the proof of correctness of the ST
algorithm follows as well.

To improve the computational efficiency over the ST
algorithm, the MT algorithm calls an SDP generation algo-
rithm in the early stage of the SDPP formula. In this way, the
phase products generated in the early stage of the SDPP
computation are guaranteed to be disjoint. As a result, the
number of the intermediate phase products is greatly
reduced.

In KITT-1 [1], which is a computer program using the
combinatorial approach for the PMS analysis, when a
component is dormant in a phase, it is handled as a hot
spare. That is, under the constant failure rate assumption,
the component failure rates are assumed to be the same,
whether the component is dormant or not. In a real system,
the failure rate of a dormant component is generally much
less than the failure rate of an active component. It is a well
accepted practice to approximate the failure rate of a
dormant component to be zero. Therefore, in the MT algo-
rithm, a dormant component in a phase is regarded as a cold
spare and its default failure rate is assumed to be zero.

The transient analysis of a PMS is also considered in this
paper. Special attention needs to be paid to possible latent
failures at the mission phase change times (MPCT). If there
are more stringent success criteria just after an MPCT, an
unreliability jump would occur at that time. Finally, the MT
algorithm is implemented into the software packagesharpe
(Symbolic Hierarchical Automated Reliability and Perfor-
mance Evaluator) [16]. Withsharpe, we can automatically
analyze the unreliability of a multi-phase mission system,
both at the end of the whole mission and at any time in
between. Several examples that illustrate the MT algorithm
are provided.

The rest of the paper is organized as follows. Section 2
presents some of the key concepts that will be used in the
MT algorithm. In Section 3, the SDPP formula is first intro-
duced. Then we describe and compare the ST and MT algo-
rithms. A comparative example is also given there. The
transient analysis of the PMS is described in Section 4.
The sharpe implementation is introduced in Section 5. In
Section 6, more examples of the PMS analysis are given.
Experimental results of MT as implemented insharpe are
reported. We conclude the paper in Section 7. The Appendix
shows the errors we found in Ref. [1] together with the
corrections.

2. Preliminary concepts

2.1. Distribution functions with mass at origin

One of the key concepts we will use in the MT algorithm
is the cumulative distribution functions with a mass at the
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origin. Consider a random variableCjp with cumulative
distribution function (CDF) [16] given by

FCjp
�t� � �1 2 e2lj1T1�1 e2lj1T1�1 2 e2lj2T2�1 …

1 e2lj1T1e2lj2T2…e2lj�p21�T�p21� �1 2 e2ljpt�; �1�
wherel ji is the failure rate for componentCj in Phasei, Ti is
the phase duration for Phasei, t [ �0;Tp� and 1# i # p.
The time origin for each phase isreinitialized to zero at the
start of the phase. The above function has a mass at the
origin given byFCjp

�0� � 1 2 e2Sp2 1
i�1 lji Ti . The last term of

CDF (1) represents the continuous part of the distribution
function. After simplification, CDF (1) turns out to be:

FCjp
�t� � 1 2 e

2

Xp2 1

i�1

lji Ti

266664
377775e2ljpt

: �2�

In order to illustrate the use of such a CDF, consider a
PMS that has just completed the first (p 2 1) phases and is
currently in thepth phase. The above CDF can be assigned
as the time to failure distribution function of componentCj

in the pth phase. Recall thatFCjp
�t� is the probability that

component Cj fails at a time point t , where
0 # t # t 1 Sp2 1

i�1 Ti . The probability mass at the origin is
the probability that the component has already failed at a
time point within the first (p 2 1) phases. The factor in the
square brackets of CDF (2) is the probability that compo-
nentCj has survived in the first (p 2 1) phases. We will use
the distribution function of form (2) to represent the failure
CDF of individual components in different phases.

2.2. Phase manipulation

To describe the MT algorithm, we use a three-component
system (Fig. 1) as a sample example. To show the effect of

the PMS analysis, we will consider all the six permutations
of phases X, Y and Z. That is, the mission can go through all
the three phases in any order.

Unless otherwise specified, the sequence number of a
phase is represented by a lower case letter, and the name
of a phase is denoted by an upper case letter. LetAi � 1
denote the event that componentA is up in phase numberi.
Then the Boolean expressions for the phases with names X,
Y and Z are:

PEiX � �Ai 1 �Bi 1 �Ci ;

PEiY � �Ai 1 �Bi
�Ci ;

PEiZ � �Ai
�Bi
�Ci :

Before applying any algorithm to analyze a PMS, it is gener-
ally a good practice to simplify the configurations of the
PMS by applying themincut cancellation rule[4]:

A mincut for a phase can be cancelled from the list of
mincuts for that phase if it contains a mincut of a later
phase.

The rule can be proved by applying the law of absorption.
Unless otherwise stated, we assume that we are interested in
finding the unreliability of a PMS at the end of the mission
and not at a time point before the mission completion. Table
1 shows the effect of applying the mincut cancellation rule
for a PMS with a phase sequence of X, Z and Y. Mincut {�A}
is cancelled fromPE1X because it contains the mincut {�A} of
PE3Y. Similarly, mincut {�A; �B; �C} is cancelled fromPE2Z.

When an expression for an SDPP is simplified, we need to
merge different combinations of phase products. This could
be a little tricky and needs special treatment. Leti and j be
two phase numbers andi # j. The reduction rules [15] in
Table 2 can be used to simplify the logic expressions.

Note that fori , j, two kinds of combination of phase
products cannot be simplified.

1. EventAi
�Aj describes the fact that componentA is opera-

tional until the end of Phasei and fails sometime between
the end of Phasei and the end of Phasej. Using CDF (2),

Pr�Ai
�Aj� � e

2

Xi

m�1

�lmTm�
�1 2 e

2

Xj 2 1

n�i 1 1

�lnTn�
e2lj t�; �3�

where 0# t # Tj . The first term�e2Si
m�1 �lmTm�� of Eq. (3)

represents that componentA is up in the firsti phases.
The second term represents that componentA is down
sometime between Phasesi andj. Since the firsti phases
have already been considered in the first term, in the
second term, the failure rateln is accumulated starting
from Phasei 1 1.

2. Event �Ai 1 Aj represents the fact that either componentA
is down at the end of Phasei or it is still functioning at the
end of Phasej. Notice that event�Ai 1 Aj is a disjoint
union.
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Fig. 1. The failure criteria for a system with three phases.

Table 1
The effect of mincut cancellation

Before cancellation After cancellation

PE1X � A1 1 B1 1 C1 PE1X � B1 1 C1

PE2Z � A2 B2 C2 PE2Z � B

PE3Y � A3 1 B3 C3 PE3Y � A3 1 B3 C3



3. Algorithm

3.1. Sum of disjoint products and its phased-extension: sum
of disjoint phase products

The sum of disjoint products (SDP) formula is one of the
techniques [17,18] that is used to compute the probability of
a union of a set of events in a single-phased system. Since
this paper uses fault trees to specify the system configura-
tions, we will use the mincuts to illustrate how SDP works.
Let Ei be the event that all the components in the mincut
MCi fail. In other words, the eventEi is a Boolean expres-
sion describing asinglemincut MCi. The SDP formula for
calculating the unreliability of the system is:

UR�S� � Pr
[n
i�1

Ei

" #
� Pr E1

[
� �E1E2�

[
� �E1

�E2E3�
h

[
…
[
� �E1

�E2
…En21En�

i
; �4�

wheren is the total number of mincuts. Define the consti-
tuentCS1 � E1 and in general,CSi � �E2

�E2
…Ei21Ei where

1 # i # n. Since the constituentsCSi in Eq. (4) are disjoint
from each other, the final SDP formula for calculating the
unreliability of the system is:

UR�S� �
Xn
i�1

Pr�CSi�: �5�

The crux of the SDP formula is to obtain the disjoint consti-
tuentCSi, for i . 1. Several algorithms have been published
for this calculation. A survey that compares these algo-
rithms can be found in Ref. [19].

To calculate the unreliability of a PMS, we extend the
sum of disjoint products formula into the sum of disjoint
phase products (SDPP) formula. LetPEi be the event that a
PMS is down in Phasei. The SDPP formula for calculating

the unreliability of the PMS is:

UR�PMS� � Pr
[p
i�1

PEi

" #
�6�

� Pr
h
PE1

[
�PE1 PE2

[
�PE1 PE2PE3�

[
…

[
�PE1 PE2

……PEp21PEp�
i
;

�7�
wherep is the total number of phases for the PMS. In Eq.
(4), eventEi represents onesinglemincut. In Eqs. (6) and
(7), eventPEi represents aset of mincuts, in which the
mincuts are generally non-disjoint. The complement of
PEi is normally a set of non-disjoint phase products as
well. Define the phase constituentPC1 � PE1 and in
general, PCi � PE1 PE2

…PEi21PEi , where 1, i # p.
Generally, the phase products in eachPCi are non-disjoint.
If the phase products in aPCi are mutually disjoint, thePCi

is defined as adisjoint phase constituent, denoted byDPCi.
One of the challenges in using the SDPP formula is to
change thePCi into DPCi. In the following sections, we
will explain in detail how this problem is solved in the ST
and MT algorithms. Once theDPCi are found, the final
SDPP formula for calculating the unreliability of the PMS
is:

UR�PMS� �
Xp
i�1

Pr�DPCi�: �8�

In ST [15], the unreliability of a PMS is given by

UR�PMS� � Pr�CFC�1
Xp2 1

i�1

Pr�PFCi�; �9�

whereCFC� PEp and is referred as theCommon Failure
Combinations (CFC), PFCi � PEiPEi11

…PE�p21� PEp,
and is referred as aPhase Failure Combination(PFC).

Proposition 1. The ST algorithm, which is based on Eq.
(9), is the right to left (RL-SDPP) evaluation of the SDPP
formula (6).

Proof. Straight forward by comparing Eqs. (6) and
(9). A

In MT, we use the SDPP formula as the core of the algo-
rithm. In addition, the SDPP is evaluated from left to right
(LR-SDPP), as it is conventionally done in evaluating SDP.
Furthermore, we use mincut cancellation in MT while this
was not done in ST.

In the following sections, we describe the main opera-
tions that are used in the ST and MT algorithms. We first
present the ST algorithm in Section 3.2. Then we show the
MT algorithm and its improvements over the ST algorithm
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Table 2
Reduction rules

AND OR

AiAj ! Aj Ai 1 Aj ! Aj

Ai Aj ! Ai Ai 1 Aj ! Ai

AiAj ! 0 Ai 1 Aj ! 1

Fig. 2. The core of the ST algorithm.



in Section 3.3. In Section 3.4, an example is given which
illustrates the improvements in MT by using a detailed
comparative listing of the steps in applying MT and ST.

3.2. The ST algorithm

In the ST algorithm (Fig. 2), the mincuts of each phase are
first found in Step 1 by applying one of the mincut genera-
tion algorithms [20–22]. SincePEp is a union of the mincuts
for the last phase, the SDP forCFC is calculated by calling
routinefind_SDPwhich applies one of the SDP generation
algorithms [23–28]. The subscriptp in PEp at Step 2 is used
for the convenience of identification. No phase numbers
have been added to the expression yet. In Step 3, routine
add_phase_numbersincludes the phase information to the
SDP ofCFC. In Step 4, the probability forCFC is calculated
by using the distribution functions with mass at origin,
which is discussed in Section 2.1. In Step 5, eachPFCi is
found and the system unreliability is updated. Fig. 3 shows
routine find_PFC, which is used to generate an SDPP for
PFCi � PEiPEi11

…PE�p21� PEp, where 1# i , p.
In routinefind_PFC, the complement ofPEj is obtained

through routine inverseand is assigned toGj. In routine
multiply_PFC(Fig. 4), list l is first initialized to be empty.
In Steps 2 and 3, the first phase products ofPFCi andGj are
assigned tou andv respectively. Routinemultiplycombines
one phase product ofPFCi and one phase product ofGj into
a new phase producttmp. The reduction rules as shown in

Table 2 are applied for the combination. Since the phase
products inPFCi andGj are generally not disjoint, we need
to check if the newly generated phase producttmp is a
subset or a superset of one of the phase products in the
list l. This is done by calling routinecompare. Three scenar-
ios might happen:

1. If tmp is a subset, then nothing is done forl in the routine
sort_and_insert.

2. If tmp is a superset, then the phased products which are
subsets oftmp are eliminated froml. And routine
sort_and_insertadds tmp in l to its proper place. The
size of a phase product is defined as itscardinality.
Notice that the phase products inl are sorted (through
routine sort_and_insert) according to the increasing
cardinality of the phase products. This is done to make
routinefind_SDPP(used in routinefind_PFC) more effi-
cient. Similar implementations ofcompareandsort_an-
d_insertin SDP algorithms have been reported in Refs.
[23,26,27].

3. If tmp is neither a subset nor a superset, routinesort_an-
d_insertaddstmp in l according totmp’s cardinality.

In multiply_PFC, since the phase products inPFCi andGj

are generally not disjoint, the resulting phase products for
multiply_PFCare normally not disjoint as well. This is the
reason why routinefind_SDPP is needed in routine
find_PFC. Routinefind_SDPPapplies formula (7) to get
an SDPP forPFCi. Notice that when using the SDPP
formula (7) for routinefind_SDPP, eventPEi is no longer
thesetof mincuts for Phasei. Instead, it represents asingle
phase product inPFCi. Again the procedurescompareand
sort_and_insertare needed infind_SDPP.

3.3. The MT algorithm

From the analysis in the above section, it is seen that the
complexities of the ST algorithm arise mainly from three
routines:find_SDPP, compareand the sorting process in
sort_and_insert. In the MT algorithm (Fig. 5), two major
steps are taken to improve the computational efficiency:

• First, the logic expressions for a PMS are simplified by
applying the mincut cancellation rule (Step 2 in Fig. 5).

• Second, by using routinefind_SDPin Steps 1 and 3 in
find_DPC(Fig. 6), which is the counterpart offind_PFC
in the MT algorithm, the phased products generated in
the early stage of the SDPP computation are guaranteed
to be disjoint. Consequently, the routinesfind_SDPP,
compareand the sorting process insort_and_insertare
no longer necessary in the MT algorithm.

Because of the above modifications, the MT algorithm is
computationally more efficient than the ST algorithm.

In MT, Steps 3 and 4 are similar to the Steps 2–4 in the
ST (Fig. 2). The only difference is that routineadd_phase_
numbersdoes not need to be applied toPE1. This is because
PE1 describes the failure combinations for Phase 1, no
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Fig. 3. Routinefind_PFC(i).

Fig. 4. Routinemultiply_PFC(PFCi, Gj).



previous phase information is needed for the evaluation of
Pr[DPC1]. Routinefind_DPC(Fig. 6) is used to generate an
SDPP forDPCi � PE1 PE2

…PEi21PEi , where 1, i # p.
In the first for loop in routinefind_DPC, after routine
find_SDPis called, each of the operandsDPCi and G1 is
an SDP. With the phase information being added by calling
the routineadd_phase_numbers, each of the operandsDPCi

andG1 turns out to be an SDPP. By applying the reduction
rules in Table 2, routinemultiply_DPC(Fig. 7) combines
two SDPP into a single SDPP. Because the product of two
disjoint products is always disjoint, after the first for loop in
routinefind_DPC, DPCi is an SDPP. ThenDPCi is recur-
sively updated by the multiplication of two SDPP, thus after
Step 3,DPCi is already an SDPP. This implies that routine
find_SDPP, which is used infind_PFC, is no longer needed
in find_DPC. As will be shown in Section 3.4, this would
greatly improve the efficiency of the calculation by reducing
the number of intermediate phase products.

Comparing routinesmultiply_PFC and multiply_DPC,
we can find two major improvements inmultiply_DPC:

1. Due to thefind_SDProutine infind_DPC, the operands
DPCi and Gj are always disjoint with each other in
routinemultiply_DPC. As a result, the newly generated
phase producttmp is always disjoint from any phase
product in the listl. Thus, routinecompare in multi-
ply_PFC is no longer necessary inmultiply_DPC.

2. Because routinefind_SDPPis not needed infind_DPC,
the sorting process insort_and_insertis no longer neces-
sary formultiply_DPC. Thus routinesort_and_insertis
replaced by a simple routineinsert, where tmp is just
added at the end of listl. With respect to cardinality,
the list l in multiply_DPCis a random set of the phased

products, rather than a sorted one in routinemulti-
ply_PFC. However, this would not make any difference
for the final calculation of Pr[DPCi].

The above two changes, which are made possible by apply-
ing an SDP generation algorithm in the earlier stage (Steps 1
and 3 in routinefind_DPC) of the SDPP formula, greatly
improve the efficiency of routinemultiply_DPC.

As we mentioned earlier in Section 3.2, in an SDP genera-
tion algorithm, there are also routines for thecompareand
sort mechanisms. However, these are used only for a single
phased-system, which is more efficient than for multi-phase
systems. The strategy we use here is tocompareandsort in
an earlier stage where only a single phase is involved. In ST,
this is done in a later and more complex stage, i.e. after the
phase products are entangled with information from multi-
ple phases. The effect of these two approaches can be shown
in the following example.

3.4. Example 1: an illustration

In this example, we apply the MT algorithm to find the
unreliability of a PMS with configurations shown in Fig. 1.
The permutation of X, Y and Z is considered. A detailed
comparison between the ST and the MT is also shown here.
Only the logical expressions are given in this section. The
final numerical results are given in Sections 5 and 6.

Using the MT algorithm:

DPC1 � PE1X

(after the mincut cancellation)
� B1 1 C1

(after calling an SDP generation algorithm)
� B1 1 B1C1;

DPC2 � PE1XPE2Y

� �B1 1 C1��A2 1 B2 C2�
(before applyingmultiply_DPCin find_DPC(2))
� B1C1�A2 1 A2B2 C2�
(after the for loop infind_DPC(2))
� A2B1C1 1 A2B1B2C1C2;
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Fig. 5. The core of the MT algorithm.

Fig. 6. Routinefind_DPC(i).

Fig. 7. Routinemultiply_DPC(DPCi, Gj).



DPC3 � PE1X PE2YPE2Z

� �B1 1 C1��A2 1 B2 C2�A3 B3 C3

(before applyingmultiply_DPC in find_DPC(3) when
j � 1)
� B1C1�A2 1 B2 C2� A3 B3 C3

(after the first for loop infind_DPC(3))

� A3B1B3C1C3�A2 1 B2 C2�
(before applyingmultiply_DPC in find_DPC(3) when
j � 2)
� A3B1B3C1C3�A2B2 1 A2B2C2�
(after the second for loop infind_DPC(3))
� A2A3B2B3C1C3 1 A2A3B1B2C2C3:

The final total number of disjoint phase products (DPP) for
the MT algorithm is 6.

Using the ST algorithm:

CFC� PE3Z

� A3 B3 C3;

PFC1 � PE1XPE2Y PE3Z

(no mincut cancellation is applied in ST)

� �A1 1 B1 1 C1��A2 1 B2 C2� A3 B3 C3

(before applyingmultiply_PFC in find_PFC(1) when
j � 2)
� �A1 1 B1 1 C1��A2B2 1 A2C2�A3 B3 C3

(after the first for loop infind_PFC(1))

� �A2B2C1 1 A2B1C2�A3 B3 C3

(before applyingmultiply_PFCin find_PFCwhen j �
3)
� �A2B2C1 1 A2B1C2��A3 1 B3 1 C3�
(after the second for loop infind_PFC(1))
� A3B2C1 1 A3B1C2 1 A2B3C1 1 A2B1C3

(now start the routinefind_SDPP(PFC1))
� A3B2C1 1 �A3B1C2 1 A2B3C1 1 A2B1C3��A3 1
B2 1 C1�
(after routinescompareandsort_and_insert)
� A3B2C1 1 A3B1C2 1 A2B1C3 1 A2A3B3C1

� A3B2C1 1 A3B1C2 1 �A2B1C3 1 A2A3B3C1��A3 1
B1 1 C2�
(after routinescompareandsort_and_insert)
� A3B2C1 1 A3B1C2 1 A2A3 B1C3 1 A2A3B3C1�A2 1
A3 1 B1 1 C3�
(after routinescompareandsort_and_insert, nowPFC1

is disjoint)
� A3B2C1 1 A3B1C2 1 A2A3 B1C3 1 A2A3B3C1;

PFC2 � PE2YPE3Z

� �A2 1 B2 C2�A3 B3 C3

(before applyingmultiply_PFC in find_PFC(2) when
j � 3)
� �A2 1 B2 C2��A3 1 B3 1 C3�
(after the for loop infind_PFC(2))
� A2B3 1 A2C3 1 A3B2 C2

(now start the routinefind_SDPP(PFC2))
� A2B3 1 �A2C3 1 A3B2 C2��A2 1 B3�
(after routinescompareandsort_and_insert)
� A2B3 1 A3B2 C2 1 A2 B3C3�A3 1 B2 1 C2�
(after routinescompareandsort_and_insert, nowPFC2

is disjoint)
� A2B3 1 A3B2 C2 1 A2 B3C3:

The final total number of DPP for the ST algorithm is 8.
Comparing the two algorithms, we notice that the final total
number of DPP for the MT algorithm is less than that of ST
algorithm. More importantly, however, MT generates fewer
intermediatephase products than ST. This is due to the
embedded mincut cancellation rule and the SDP generation
algorithm in the early stage of the SDPP computation.

4. Transient analysis

In the previous section, we have shown how the MT
algorithm computes the unreliability of a PMS at the end
of the whole mission. In other words, UR�PMS� �Pp

i�1 Pr�DPCi� gives us the unreliability of the system at
time point t, where t � Pp

i�1 Ti . Sometimes, we might be
interested in getting the unreliability information at any time
point between the mission start time and the mission end
time. Among these time points, special attention needs to be
given to some certain time points: mission phase change
times (MPCT). At the transition point between two phases,
the unreliability of the PMS may rise suddenly. This would
happen if more stringent criteria apply to the next phase than
to the current phase. This is defined as thelatent failure
[10,29] because the system would fail instantly at MPCT.
For example, when an aircraft is flying, it does not matter
whether the landing gear is operational or not. However, as
soon as the landing phase begins, if the landing gear has
failed in an earlier phase, the system fails immediately.

Suppose that before an MPCT, the system is in Phase i,
and after it, the system is in Phasei 1 1. We assume that the
transition time from one phase to another is so negligible
that it is taken to be zero. If we wish to compute the unrelia-
bility of the system at MPCT, then the index of the last
phase for evaluation, denoted bype, is i 1 1. The evaluation
time (te) for Phasepe is 0. That is, it is the failure criteria in
the later phase that account for the possible latent failure,
not the duration of the later phase. In addition, for transient
analysis of a PMS, the mincut cancellation applies only up
to the firstpe phases.

As an example, consider a PMS (Fig. 1) with permutation
Y, X and Z. If the phase durations are given asTY, TX andTZ,
then the time pointst1� TY andt2� TY 1 TX are MPCT for
the PMS. In the following we demonstrate how the unreli-
abilities of the PMS at MPCT are computed.

At t1, the index of the last phase for evaluation is 2,
UR�PMS�t1 �

P2
i�1 Pr�DPCi�, where

DPC1 � PE1Y
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(due to the mincut cancellation rule)
� B;

DPC2 � PE1YPE2X

� B·�A2 1 B2 1 C2�
� A2 1 A2B2 1 A2B2C2;

UR�PMS�t1 � Pr�DPC2�
� Pr�A2�1 Pr�A2B2�1 Pr�A2B2C2�
� Pr�A1�1 Pr�A1B1�1 Pr�A1B1C1�; sincete � 0: �10�

At t2, the index of the last phase for evaluation is 3, after
applying mincut cancellation, DPC1 � B;DPC2 �
A2 1 A2B2 1 A2B2C2 and DPC3 � A2A3B2B3C2C3.

Because the valuation time for Phase 3 is zero,
Pr[DPC3] � 0. Thus

UR�PMS�t2 � Pr�DPC2�
� Pr�A2�1 Pr�A2B2�1 Pr�A2B2C2�: �11�

Comparing Eqs. (10) and (11), we notice that the Boolean
expressions forDPC2 are the same at both time pointst1 and
t2. However, since the phase durations for the two cases are
different, the final numerical values for Pr[DPC2] are not the
same.

Using the above analysis, we obtained the unreliabilities
at MPCT forPMSYXZ. In Table 3, the unreliabilities at the
end of a single and double phased-systems are also
presented. From these, we can find the possible unreliability
jump due to the latent failure. If the failure criteria in a later
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Table 3
The effect of latent failure at MPCT

Time (hours) System UR× 1023 System UR× 1023 UR jump× 1023

10 PMSYXZ 2.99550450 PMSY 1.00049817 1.99500633
20 PMSYXZ 5.98203595 PMSYX 5.98203595 0

Fig. 8. A sharpe input file for PMS analysis.



phase are more relaxed, then at MPCT, no latent failure
would occur. This is true when thePMSYXZ transfers from
the second phase X to the third phase Z. There is no unrelia-
bility jump at MPCTt2. All the phase durations in Table 3
are 10 h and the failure rate for each component is 0.0001/h.

If the evaluation timet is between two MPCT, i.e.
MPCTi , MPCTi11, where MPCTi �

Pi
m�1 Tm and

1 # i , p, then the index of the last phase (denoted bype)
for evaluation isi 1 1. The evaluation time (te) for that
phase is (t 2 MPCTi). The unreliability of the PMS att
is evaluated according to UR�PMS�t �

Ppe
i�1 Pr�DPCi�,

whereTpe
� te.

5. The sharpesharpe implementation

The MT algorithm has been implemented insharpe [16],
a software package that analyzes stochastic models.sharpe
was developed for modeling complex real-time systems. It
has been used in over 220 academic institutions and indus-
trial laboratories. The package provides a specification
language and a wide variety of algorithms for analyzing
reliability, availability, performance and performability
models. In this section, we present a particular example
which shows how to usesharpe for end-of-mission and
transient analysis of the PMS as shown in Fig. 1. All the
examples mentioned in this paper can be handled by
sharpe, and all the numerical results presented in this
paper were calculated bysharpe.

Fig. 8 presents asharpe input file for end-of-mission and
transient analysis of the PMS as shown in Fig. 1. Line
numbers are included only for the sake of explanation.
Line 1 specifies the number of digits to be printed in the
results after the decimal point. On lines 3 through 23, the
configurations for different phases are described by fault
trees. In line 3, the definition of eventA starts with the
keywordbasicbecause the event appears only once in the
fault tree. Otherwise, the event would be specified by
the keywordrepeat. An example with repeated (shared)
event will be presented in the next section. The exponential
time to failure distribution is assigned to eventA through the
built-in functionexpin line 3. The failure rate isa_x. Line 7
is a structure-defining line, defining the OR gate combining
the eventsA, B and C. The gate is defined by using the

keyword or, followed by the name of the gate (top) and
the inputs (a, b and c) to the gate.

Lines 25 through 38 assign the failure rates for the
components and the phase durations. In this example, all
the phase durations are 10 hours and the failure rates are
of the same value, 0.0001/h. Thus the input data do not skew
results in any direction as all the components are similar and
the phase durations are the same. The results are only
affected by the sequence of the phases and the phase config-
urations. Lines 40 through 74 define the six permutations of
the three phases. In line 41, the definition of the first phase
starts with the keywordphase-1, followed by the name of
the fault tree (X) for the first phase. The time duration for the
first phase is assigned asT_x by using the keywordtime.
Lines 76 through 79 define a two phased system which will
be used to check if an unreliability jump would occur at
MPCT. The unreliabilities at time points 10 and 20 are
evaluated forPMSYXZ, the fault tree Y andPMSYX from
line 81 to line 87. The transient analysis of the six permuta-
tions is obtained from line 89 to line 96. From Fig. 8, it can
be noticed thatsharpe supports the reusability [30] of the
phase specification. For example, Phase Y is specified for
once, but it can be used in different PMS. More importantly,
the sharpe implementation of the MT algorithm reuses the
GKG_VT [26] as the SDP generation algorithm. The
GKG_VT algorithm was implemented insharpe in 1989.
Since then, it has been used successfully for the SDP
generation. There are several advantages [30,31] to reuse
software components in the software systems. Two related
ones are listed below:

• Fewer errors will occur by reusing the already tested and
used software components than developing new code
from scratch. Consequently, by reusing the software
components, the development and maintenance costs
can be reduced, and the overall software reliability is
enhanced.

• If components with sophisticated, efficient algorithms
can be reused (in this case, the GKG_VT algorithm),
the overall software product (in this case, the MT algo-
rithm) will be more efficient. This is shown in Section 3.

Part of the output file for Fig. 8 is shown in Fig. 9. The
transient results are shown in Fig. 10. From Fig. 10, we
can see how the unreliability of the system is affected by
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Fig. 9. Part of thesharpe output for Fig. 8.



the sequence of different phases. Unreliability jumps are
observed at MPCT for all but one permutation (PMSXYZ).
Low unreliabilities in earlier phases are not predictive of
low unreliabilities in later phases. ForPMSYZX andPMSZYX,
the systems experience high unreliability jumps once they
enter Phase 3. This is due to the stringent success criteria in
Phase X. Armed with the transient analysis of PMS, the
system designer can gain insights among alternative designs
and select the best available scheme to enhance the robust-
ness of the PMS.

6. Experimental results

In this section, we first describe five more examples that
are used to test the MT algorithm. Then the execution times
are given for the examples presented in this paper.

6.1. More examples to illustrate MT

6.1.1. Example 2: a PMS with shared components in some
phases

In Fig. 11, componentB is shared by two AND gates in
PhaseR. In thesharpe input file (which is not shown in this
paper), the keywordrepeatinstead ofbasicis used to indi-
cate that eventB appears more than once in the fault tree but
represents only one physical component.

6.1.2. Example 3: a PMS with dormant components in some
phases

In this example, we show how the MT algorithm handles
the PMS with dormant components in some phases.
Suppose that we have a simple two-phased mission system
as shown in Fig. 12. The phase sequence is assumed to be
XY. ComponentA is dormant in Phase 1 (named asX). In
KITT-1 [1], which is a computer program using the combi-
natorial approach for the PMS analysis, when a component
is dormant in a phase, it is handled as a hot spare. That is,
under the constant failure rate assumption, the component
failure rates are assumed to be the same, whether the
component is dormant or not. In a real system, the failure
rate of a dormant component is generally much less than the
failure rate of the component when it is active. It is a well
accepted practice to approximate the failure rate of a
dormant component to be zero. Therefore, we think it is
more appropriate to consider a dormant component in a
phase as a cold spare. Consequently, the default failure
rate of a dormant component is assumed to be zero in the
MT algorithm. In addition, in our approach, it is also possi-
ble to assign a non-zero failure rate to a cold spare.

Now, consider another two phased mission system as
shown in Fig. 13, whose phase sequence is also XY. The
only difference between the two PMS (Figs. 12 and 13) is
that in Fig. 13, componentA is being used in Phase 1 as well.
However, after applying the mincut cancellation rule, Fig.
13 can be represented by Fig. 12. Although componentA is
not physically shown in Phase X in Fig. 12, when the MT
algorithm uses Fig. 12 as a simplification for Fig. 13, MT
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Fig. 10. The unreliability values for the six permutations.

Fig. 11. A PMS with shared components in Phase R.

Fig. 12. A PMS where componentA is dormant in Phase X.



will automatically retrieve the failure rate of componentA
for Phase 1, instead of regarding it as 0. This is achieved by
maintaining two lists for each phase in the MT algorithm.
One list is to record the mincuts. The other is the component
list. For both Figs. 12 and 13, the mincuts for the two PMS
are the same. However, their component lists for Phase X
are different. Consequently, the unreliabilities are different
(please refer to Table 6) for the phased-mission systems in
Figs. 12 and 13.

6.1.3. Example 4: the tutorial example in Ref. [1]
Fig. 14 shows the PMS taken from the tutorial example in

Ref. [1]. For the two different sets of failure rates provided
in Ref. [1], the MT algorithm obtains the same exact solu-
tions as in Ref. [1].

6.1.4. Example 5: boiling water reactor (BWR) system
In Fig. 15, the emergency core cooling system (ECCS) of

a BWR is considered [1]. A detailed physical description of
this PMS can be found in Ref. [1]. The notations of Ref. [1]
are simplified as in Table 4. The mincuts for Phase 3 are
listed two times (before and after the mincut cancellation) in
Ref. [1]. They are not consistent with each other and none of
them is correct. The errors and the correction are shown in
the Appendix.

As mentioned in Example 3, in Ref. [1], componentsG
andH are considered as hot spares in Phase 1. Under this
assumption, MT yields the correct result for the unreliability
of the PMS, which is 5.22048061× 1024. In Ref. [1], the
result was calculated as 5.22046× 1024, a smidgen lower
than the correct answer. When componentsG and H are
regarded as cold spares in Phase 1, the unreliability is calcu-
lated to be 5.22038735× 1024 by using the MT algorithm as
implemented insharpe.

6.1.5. Example 6: a distributed computer system
In Fig. 16, we consider a modified version of a distributed

computer system modeled in Ref. [9]. The system consists
of four types of redundancy nodes:

• Node P has triple modular redundancy (Pa, Pb and Pc).
For the PMS to function correctly, at least two of them
must be working in Phase A. This is represented by the 2-
out-of-3 gate.

• Node Q has quadruple modular redundancy (Qa, Qb, Qc
and Qd). Different phase has different redundancy
requirement for node Q.

• Node M has dual redundancy (Ma and Mb).
• Node R has triple modular redundancy (Ra, Rb and Rc).

The input parameters for each phase are shown in Table 5.

6.2. Execution time

In order to test the MT algorithm given in this paper, we
measure the execution times for a number of phased-
mission systems. Since there is no implementation for the
ST algorithm, the execution times cannot be compared
between ST and MT. However, by including the execution
times taken by MT as implemented insharpe, we have
provided some information for the reader to judge the effi-
ciency of the algorithm.

Table 6 represents the experimental results by running
sharpe for a number of examples presented in this paper.
The clock starts to tick when the routinefind_mincutsis
called in Fig. 5. The clock stops when the unreliability of
the PMS at the end of the mission is found. The results are
generated by using a SUN Ultra 1 workstation. Unless
otherwise specified, the following assumptions are made:

• the permutation order of the PMS is the same as that
shown in the related figure;

• the failure rate of each component is constant and the
value is 0.0001 per unit time; the time duration for each
phase is constant and the value is 10 time units;

• when a component is dormant in a phase, it is considered
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Fig. 13. A PMS where all the components are active.

Table 4
Notation simplification

Notation

In Ref. [1] HPCS ADS LPCI-A LPCI-B LPCI-C LPCS HX-A HX-B
In Fig. 15 A B C D E F G H

Table 5
Input parameters for the PMS in Fig. 16

Phase lP
a lQ

a lM
a lR

a Duration

1 110 120 14 0 2
2 – 310 5.1 0 8
3 – 220 4.1 0 9
4 – 37 22 140 12

a The unit of the failure rates is 1026/unit time.



as a cold spare, i.e. the failure rate of the component in
that phase is assumed to be zero.

7. Conclusion

In this paper, we extend the sum of disjoint products
formula into the sum of disjoint phase products (SDPP)
formula. An algorithm based on SDPP to analyze the

unreliability of a PMS has been developed. The algorithm
yields exact results and is simple in concept and computa-
tion. Both end-of-mission and transient analysis of a PMS
can be carried out by the algorithm. The algorithm has also
been incorporated in the software packagesharpe. With
sharpe, the complexity of the algorithm is hidden from
the user. A PMS can be described at a high level with
fault trees. Then by running asharpe input file, we can
analyze quantitatively the unreliabilities of the PMS.
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Fig. 14. The tutorial example of Ref. [1].

Fig. 15. Fault trees for the ECCS of a BWR.

Table 6
Solutions of the PMS examples

PMS Total no. of mincuts

Before cancellation After cancellation DPP Time (ms) Unreliability (× 1023)

Fig. 1 6 5 6 2305 3.99300865
Fig. 11 7 3 3 1594 8.95962123
Fig. 12 4 4 4 1866 2.99650050
Fig. 13 5 4 4 1871 3.99300567
Fig. 14a 7 6 8 2894 97.3969923
Fig. 15 13 7 19 8266 0.522038735
Fig. 16 29 13 102 77541 0.127960793

a The first set of failure rates in Ref. [1] is used here.



Appendix

The mincuts for Phase 3 in Fig. 15 are listed two times in
Ref. [1] as following. None of them is correct.

1. {HX-A, HX-B, HX-A, LPCI-B}, {LPCI-A, HX-B,
LPCI-A, LPCI-B}.

2. {HX-A, HX-B, LPCI-A, LPCI-B}, {LPCI-A, HX-B,
LPCI-A, LPCI-B}.

It is easy to verify that the correct mincuts for Phase 3
should be:

{HX-A, HX-B}, {HX-A, LPCI-B}, {LPCI-A, HX-B},
{LPCI-A, LPCI-B}.

In the simplified notation (Table 4), the mincuts are:

G;H
� 	

; G;D
� 	

; C;H
� 	

; C;D
� 	

:
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