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Abstract

The purpose of this paper is to describe an efficient Boolean algebraic algorithm that provides exact solution to the unreliability of a multi-
phase mission system where the configurations are described through fault trees. The algorithm extends and improves the Boolean methoc
originally proposed by Somani and Trivedi. By using the Boolean algebraic method, we provide an efficient modeling approach which avoids
the state space explosion and the mapping problems that are encountered by the Markov chain approach. To calculate the exact solution of the
phased-mission system with deterministic phase durations, we introduce the sum of disjoint phase products (SDPP) formula, which is a
phased-extension of the sum of disjoint products (SDP) formula. Computationally, the algorithm is quite efficient because it calls an SDP
generation algorithm in the early stage of the SDPP computation. In this way, the phase products generated in the early stage of the SDPP
formula are guaranteed to be disjoint. Consequently, the number of the intermediate phase products is greatly reduced. In this paper, we also
consider the transient analysis of the phased-mission system. Special care is needed to account for the possible latent failures at the missior
phase change times. If there are more stringent success criteria just after a mission phase change time, an unreliability jump would occur at
that time. Finally, the algorithm has been implemented in the software pasikages. With suArpE, the complexities of the phased-mission
system is made transparent to the potential users. The user can conveniently specify a phased-mission model at a high level (through fault
trees) and analyze the system quantitativ€y1999 Elsevier Science Ltd. All rights reserved.

Keywords:Binary decision diagrams (BDD); Boolean algebraic methods; Cold/hot spares; Fault trees; Latent failure; Phased-missiorsisystems;
Software reliability; Software reusability; Transient analysis

Nomenclature Pe index of the last phase for evaluation=lp, = p
te evaluation time within Phasg, 0 = t, = Ty,

CFC  common failure combinations

DPC  disjoint phase constituent

DPP  disjoint phase product 1. Introduction
MPCT mission phase change time
PFC phase failure combinations Most reliability techniques and tools generally assume
PMS  phased-mission system that the systems being analyzed perform a single phased-
SDP  sum of disjoint products mission. With the increased use of automation in industries
SDPP  sum of disjoint phase products such as aerospace, chemical, communication networks,
Gi the event that componef, fails during a time electronics, transportation and nuclear, phased-mission
period of durationT; system (PMS) analysis is being recognized as an appropriate
PE the event describing the failure combinations (a set reliability analysis method for a large number of problems
of mincuts) for Phasg 1 =i =<p [1]. Many systems perform a mission which can be divided
T duration of Phase into consecutive time periods (phases). In each phase, the
UR unreliability system needs to accomplish a specific task. The system
p total number of phases configuration (the logic model), the phase duration, and

the failure rates of the components often vary from phase
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The existence of more than one phase in a phased-missiorphased-extension of the sum of disjoint products (SDP)
system leads to some complexities which do not occur in a formula. The MT algorithm is based on the SDPP formula.
single phased-system. The problem arises because th&Ve show that the original ST algorithm is also based on
models of different phases are dependent. The techniquesSDPP. Consequently, the proof of correctness of the ST
used to reflect this dependence distinguish different algorithm follows as well.
approaches [2—10] employed for the analysis of PMS. For To improve the computational efficiency over the ST
example, in the Markov chain approach [2], the dependencealgorithm, the MT algorithm calls an SDP generation algo-
is reflected by assigning the state probabilities at the end ofrithm in the early stage of the SDPP formula. In this way, the
one phase as the initial state probabilities for the immedi- phase products generated in the early stage of the SDPP
ately following phase. In the combinatorial approach [4], the computation are guaranteed to be disjoint. As a result, the
dependence can be accounted for by replacing a componenhumber of the intermediate phase products is greatly
G in Phasei with a series of s-independent components reduced.

Ci1.Cj2. ... and Gj;. Then the reliability block diagrams In KITT-1 [1], which is a computer program using the
(RBD) of different phases are connected in series to get combinatorial approach for the PMS analysis, when a
the equivalent single phased-system. Although the original component is dormant in a phase, it is handled as a hot
paper used RBDs, an equivalent fault tree approach can bespare. That is, under the constant failure rate assumption,
envisaged [1]. the component failure rates are assumed to be the same,

Both of the above approaches have advantages and drawwhether the component is dormant or not. In a real system,
backs. The advantage of the Markov chain approach is thatthe failure rate of a dormant component is generally much
it can reflect the dynamic behavior such as transient fault less than the failure rate of an active component. It is a well
recovery. However, with the Markov approach, there is accepted practice to approximate the failure rate of a
generally a state space explosion problem. For a systemdormant component to be zero. Therefore, in the MT algo-
composed oh components, we may need up td Sates rithm, a dormant component in a phase is regarded as a cold
to represent each phase. In addition, since configurations arespare and its default failure rate is assumed to be zero.
generally different from phase to phase, special care is The transient analysis of a PMS is also considered in this
needed to map the up states from one phase to the up stategaper. Special attention needs to be paid to possible latent
in the immediately following phase. The combinatorial failures at the mission phase change times (MPCT). If there
approach is conceptually simple, but its size grows with are more stringent success criteria just after an MPCT, an
the number of phases. This is due to the need to representnreliability jump would occur at that time. Finally, the MT
the same component many times. An efficient way to algorithm is implemented into the software packagerpe
reduce the combinatorial explosion is to encode the Boolean(Symbolic Hierarchical Automated Reliability and Perfor-
expressions of the fault trees by means of binary decision mance Evaluator) [16]. WitkaARrPE, We can automatically
diagrams (BDD) [11-13]. Recently, a PMS algorithm based analyze the unreliability of a multi-phase mission system,
on BDD was proposed [14]. Considerable reduction in both at the end of the whole mission and at any time in
computing and storage requirements is achieved throughbetween. Several examples that illustrate the MT algorithm
this algorithm. are provided.

In this paper, we propose an algorithm to determine the  The rest of the paper is organized as follows. Section 2
reliability of a PMS with deterministic phase durations. The presents some of the key concepts that will be used in the
algorithm is based on a Boolean method originally proposed MT algorithm. In Section 3, the SDPP formula is first intro-
by Somani and Trivedi [15] (ST algorithm). Our approach duced. Then we describe and compare the ST and MT algo-
involves the solution of multiple single-phased fault trees. rithms. A comparative example is also given there. The
This is actually a divide and conquer strategy which is transient analysis of the PMS is described in Section 4.
computationally more efficient than the combinatorial The sHArPE implementation is introduced in Section 5. In
approach that combines the fault trees of all the phasesSection 6, more examples of the PMS analysis are given.
into a single fault tree with repeated events. Our methodol- Experimental results of MT as implementedsimaRrpE are
ogy also avoids the problems (state space explosion andreported. We conclude the paper in Section 7. The Appendix
mapping) faced by the Markov approach. In addition, the shows the errors we found in Ref. [1] together with the
algorithm is general enough to apply to a wide range of corrections.
problems. For example, the algorithm can handle repeated
components, dormant components leput-of-n gates in
some phases. These features are very important for the relia2. preliminary concepts
bility analysis of ultra-reliable systems. For convenience
and clear reference, we refer to our algorithm as the MT 2.1. Distribution functions with mass at origin
algorithm.

To calculate the unreliability of a PMS, we introduce the ~ One of the key concepts we will use in the MT algorithm
sum of disjoint phase products (SDPP) formula, which is a is the cumulative distribution functions with a mass at the
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the PMS analysis, we will consider all the six permutations
of phases X, Y and Z. That is, the mission can go through all
the three phases in any order.
A A Unless otherwise specified, the sequence number of a
phase is represented by a lower case letter, and the name

of a phase is denoted by an upper case letter.A.et 1
denote the event that componénis up in phase numbér
Then the Boolean expressions for the phases with names X,
Y and Z are:

PEiX:Ai+Bi+Ci’

A B C B C A B C
Phase X Phase Y Phase Z

Fig. 1. The failure criteria for a system with three phases.

origin. Consider a random variablg, with cumulative

distribution function (CDF) [16] given by PEy = A +BC,
Fo, () = (1— e ) + e il — e ™) + ... PE, = ABC,.
+ e Mg M2 g Mo v Te-n (1 — g Mt (1) Before applying any algorithm to analyze a PMS, it is gener-
ally a good practice to simplify the configurations of the
whereA; is the failure rate for componef in Phase, T; is PMS by applying thenincut cancellation rulg4]:

the phase duration for Phaget € [0,T,] and 1=i = p.

The time origin for each phaseiisinitializedto zero at the
start of the phase. The above Iylnction has a mass at the
origin given byFc (0) = 1—e *= %" The last term of
CDF (1) represents the continuous part of the distribution The rule can be proved by applying the law of absorption.

A mincut for a phase can be cancelled from the list of
mincuts for that phase if it contains a mincut of a later
phase.

function. After simplification, CDF (1) turns out to be: Unless otherwise stated, we assume that we are interested in
-1 finding the unreliability of a PMS at the end of the mission
_ Z AT and not at a time point before the mis§ion completiop. Table
Fo,)=1-|e = e Mt ) 1 shows the effect of applying the mincut cancellation rule

for a PMS with a phase sequence of X, Z and Y. MincAi} {
is cancelled fronPE,x because it contains the mincu&}{of
PEzy. Similarly, mincut {A B, C} is cancelled fromPE,;.

In order to illustrate the use of such a CDF, consider a  When an expression for an SDPP is simplified, we need to
PMS that has just completed the firpt{ 1) phases andis  merge different combinations of phase products. This could
currently in thepth phase. The above CDF can be assigned pe a little tricky and needs special treatment. Landj be
as the time to failure distribution function of compon&ht two phase numbers arids j. The reduction rules [15] in
in the pth phase. Recall thefc, (1) is the probability that  Table 2 can be used to simplify the logic expressions.
component C; fails at a time point 7, where Note that fori < j, two kinds of combination of phase
O=r=t+ Ei”;llTi. The probability mass at the origin is  products cannot be simplified.
the probability that the component has already failed at a _ . ,
time point within the firstp — 1) phases. The factor in the 1 EVENtA/A describes the fact that componéhis opera-
square brackets of CDF (2) is the probability that compo- tional until the end of Phaseand fails sometime between

nentC; has survived in the firsp(— 1) phases. We will use the end of Phaseand the end of PhageUsing CDF (2),

the distribution function of form (2) to represent the failure i ji—1

CDF of individual components in different phases. - AT - > (AT
PIAA]=e m1 (1-e n=itt e, (3

2.2. Phase manipulation . i
P where 0= t =< T;. The first terme” *m: ™)) of Eq. (3)

To describe the MT algorithm, we use a three-component ~ represents that compone#tis up in the firsti phases.

system (Fig. 1) as a sample example. To show the effect of The second term represents that comporferg down
sometime between Phadeandj. Since the first phases

Table 1 _ . have already been considered in the first term, in the
The effect of mincut cancellation second term, the failure ratg, is accumulated starting
Before cancellation After cancellation from P_hase + 1. .
—— — 2. EventA; + A represents the fact that either compongnt
iElX =:;1 wB;BC:r G 'ZEIX = gl +C is down at the end of Phaser it is still functioning at the
0z = A By g 97 = ; i A i isSioi
PEy— A + B.C, PE. — A + B G end of Phasg. Notice that even®y; + A is a disjoint

union.
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Table 2
Reduction rules

AND OR

AR A A+R—=A
AA—A A+A—A
AA—0 A+A—1
3. Algorithm
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the unreliability of the PMS is:

p
UR(PMS = Pr[U PE] ©)
i=1
= P PE, | J(PE; PE,| J(PE; PEPEY) ] -
U(PE; PE----PE,1PE,) .
W)

of disjoint phase products

The sum of disjoint products (SDP) formula is one of the

techniques [17,18] that is used to compute the probability of

(4), eventE; represents onsingle mincut. In Egs. (6) and
(7), eventPE represents aet of mincuts, in which the
mincuts are generally non-disjoint. The complement of
PE is normally a set of non-disjoint phase products as

a union of a set of events in a single-phased system. Since || pefine the phase constitueC, = PE, and in
this paper uses fault trees to specify the system configura—genera| PC = PE, PE,--PE ;PE, where 1<i=p.

tions, we will use the mincuts to illustrate how SDP works.
Let E; be the event that all the components in the mincut
MC; fail. In other words, the everf; is a Boolean expres-
sion describing @&ingle mincut MC;. The SDP formula for
calculating the unreliability of the system is:

UR(S = Pr[U Ei] = P& | JE:Ep) | J(E1EE)
i=1
U "'U(ElEz“'mEn)],

wheren is the total number of mincuts. Define the consti-
tuentCS = E; and in generalCS§ = E,E,---E_,E; where

1 =i = n. Since the constituentsS in Eq. (4) are disjoint
from each other, the final SDP formula for calculating the
unreliability of the system is:

)

UR(S = > PrCS). ®
i=1

The crux of the SDP formula is to obtain the disjoint consti-
tuentCS, fori > 1. Several algorithms have been published
for this calculation. A survey that compares these algo-
rithms can be found in Ref. [19].

To calculate the unreliability of a PMS, we extend the
sum of disjoint products formula into the sum of disjoint

phase products (SDPP) formula. IR be the event that a
PMS is down in Phase The SDPP formula for calculating

find_mincuts(PMS);
CFC = find_ SDP(PE,);
add_phase_numbers(CFC);
UR(PMS) = Pr[CFC);
fori=1,2,---,p—1do
{
PFC; = find PFC(i);
UR(PMS) + + = Pr[PFC);
}

GUbh W N

Fig. 2. The core of the ST algorithm.

Generally, the phase products in e&B are non-disjoint.

If the phase products inRG are mutually disjoint, th&C

is defined as disjoint phase constituentienoted byDPGC,.
One of the challenges in using the SDPP formula is to
change thePG into DPG. In the following sections, we
will explain in detail how this problem is solved in the ST
and MT algorithms. Once th®PG are found, the final
SDPP formula for calculating the unreliability of the PMS
is:

P
UR(PMS = > PDPC]. (8)
i=1

In ST [15], the unreliability of a PMS is given by

p—1

UR(PMS = P{CFC] + > PIPFG], ©)
i=1

whereCFC = PE, and is referred as th€ommon Failure

Combinations (CFC), PFG = PEPE,;--PE,_y PE,,

and is referred as Bhase Failure Combinatio(PFC).

Proposition 1. The ST algorithm, which is based on Eqg.
(9), is the right to left (RL-SDPP) evaluation of the SDPP
formula (6).

Proof.
9). O

Straight forward by comparing Eqgs. (6) and

In MT, we use the SDPP formula as the core of the algo-
rithm. In addition, the SDPP is evaluated from left to right
(LR-SDPP), as it is conventionally done in evaluating SDP.
Furthermore, we use mincut cancellation in MT while this
was not done in ST.

In the following sections, we describe the main opera-
tions that are used in the ST and MT algorithms. We first
present the ST algorithm in Section 3.2. Then we show the
MT algorithm and its improvements over the ST algorithm
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1. PFC; = PE;
add_phase_numbers(PFC;);
forj=(i+1),(:+2),---,pdo
{
G; = inverse(PE;j);
add_phase_numbers(G;);
PFC; = multiply PFC(PFC;, Gj);
}
PFCi=find_SDPP(PFC;);
return(PFC;);

Fig. 3. Routindfind_PFdi).

in Section 3.3. In Section 3.4, an example is given which
illustrates the improvements in MT by using a detailed
comparative listing of the steps in applying MT and ST.

3.2. The ST algorithm

In the ST algorithm (Fig. 2), the mincuts of each phase are
first found in Step 1 by applying one of the mincut genera-
tion algorithms [20—22]. SincBE, is a union of the mincuts
for the last phase, the SDP f@FC is calculated by calling
routinefind_SDPwhich applies one of the SDP generation
algorithms [23—-28]. The subscriptin PE, at Step 2 is used
for the convenience of identification. No phase numbers

have been added to the expression yet. In Step 3, routine,

add_phase_numbeiscludes the phase information to the
SDP ofCFC. In Step 4, the probability fa€FCis calculated

by using the distribution functions with mass at origin,
which is discussed in Section 2.1. In Step 5, eB&tC is
found and the system unreliability is updated. Fig. 3 shows
routine find_PFG which is used to generate an SDPP for
PFC = PEPE ;1 -PE, ;) PE, where 1=i <p.

In routinefind_PFG the complement oPE is obtained
throughroutine inverseand is assigned t&;. In routine
multiply PFC(Fig. 4), listl is first initialized to be empty.
In Steps 2 and 3, the first phase product®bC; andG; are
assigned ta andv respectively. Routinenultiply combines
one phase product 6fFG and one phase product Gf into
a new phase produtmp. The reduction rules as shown in

l=o;

u = PFC; — head,;
v = G;j = head,
while u # NIL do

{
while v # NIL do

{
tmp = multiply(u, v);
compare(l, tmp);
sort_and_insert(l, tmp);
v = v — next;
}
u = u — nerxt;

}

return(l);

b A

5.

Fig. 4. Routinemultiply_PFQPFGC, G)).
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Table 2 are applied for the combination. Since the phase
products inPFG andG; are generally not disjoint, we need

to check if the newly generated phase prodtrap is a
subset or a superset of one of the phase products in the
listl. This is done by calling routineompare Three scenar-

ios might happen:

1. If tmpis a subset, then nothing is done fan the routine
sort_and_insert

If tmpis a superset, then the phased products which are
subsets oftmp are eliminated froml. And routine
sort_and_insertaddstmp in | to its proper place. The
size of a phase product is defined as éerdinality.
Notice that the phase products lirare sorted (through
routine sort_and_inseit according to the increasing
cardinality of the phase products. This is done to make
routinefind_SDPHRused in routindind_PFQ more effi-
cient. Similar implementations @ompareandsort_an-
d_insertin SDP algorithms have been reported in Refs.
[23,26,27].

If tmpis neither a subset nor a superset, rouiod_an-
d_insertaddstmpin | according tamgs cardinality.

2.

3.

In multiply_PFG since the phase productsifrC andG;
are generally not disjoint, the resulting phase products for
multiply_PFCare normally not disjoint as well. This is the
reason why routinefind_SDPP is needed in routine
find_PFC Routinefind_SDPPapplies formula (7) to get
an SDPP forPFC. Notice that when using the SDPP
formula (7) for routinefind_SDPR eventPE; is no longer
the setof mincuts for Phase Instead, it representssingle
phase product if?FG. Again the proceduresompareand
sort_and_inserare needed ifind_SDPP

3.3. The MT algorithm

From the analysis in the above section, it is seen that the
complexities of the ST algorithm arise mainly from three
routines:find_SDPR compareand the sorting process in
sort_and_insertIn the MT algorithm (Fig. 5), two major
steps are taken to improve the computational efficiency:

e First, the logic expressions for a PMS are simplified by
applying the mincut cancellation rule (Step 2 in Fig. 5).
Second, by using routinnd_SDPin Steps 1 and 3 in
find_DPC(Fig. 6), which is the counterpart &ihd_PFC

in the MT algorithm, the phased products generated in
the early stage of the SDPP computation are guaranteed
to be disjoint. Consequently, the routinfed_SDPR
compareand the sorting process Bort_and_inserare

no longer necessary in the MT algorithm.

Because of the above modifications, the MT algorithm is
computationally more efficient than the ST algorithm.

In MT, Steps 3 and 4 are similar to the Steps 2—4 in the
ST (Fig. 2). The only difference is that routimeld_phase_
numbersdoes not need to be appliedRé;. This is because
PE; describes the failure combinations for Phase 1, no
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find_mincuts(PMS);
mincut_cancellation(PMS);
DPC, = find_SDP(PE,);
UR(PMS) = Pr[DPC];
fori=2,---,pdo

{

GUh W=

DPC; = find_DPC(i);
UR(PMS) + + = Pr[DPC;);
}

Fig. 5. The core of the MT algorithm.

previous phase information is needed for the evaluation of
Pr[DPCy]. Routinefind_DPC(Fig. 6) is used to generate an

SDPP forDPC, = PE; PE,---PE_,PE;, where 1<i =< p.
In the first for loop in routinefind_DPG after routine
find_SDPis called, each of the operan@C and G; is

an SDP. With the phase information being added by calling

the routineadd_phase_numbersach of the operand®P G

Y. Ma, K.S. Trivedi / Reliability Engineering and System Safety 66 (1999) 157-170

= g;

u = DPC; — head,
v = G; = head,;
while u # NIL do

{
while v # NIL do

{
tmp = multiply(u, v);
insert(l, tmp);
v = G; = next;
}
u = DPC; — next;

}

5. return(l);

oW

Fig. 7. Routinemultiply_DPQDPC, G)).

products, rather than a sorted one in routimeilti-
ply_PFC However, this would not make any difference
for the final calculation of PEPPC].

andG; turns out to be an SDPP. By applying the reduction
rules in Table 2, routinenultiply_DPC(Fig. 7) combines  The above two changes, which are made possible by apply-
two SDPP into a single SDPP. Because the product of two ing an SDP generation algorithm in the earlier stage (Steps 1
disjoint products is always disjoint, after the first for loop in and 3 in routinefind_DPQ of the SDPP formula, greatly
routinefind_DPG DPG is an SDPP. The®PG is recur- improve the efficiency of routinenultiply_ DPC

sively updated by the multiplication of two SDPP, thus after ~ As we mentioned earlier in Section 3.2, in an SDP genera-
Step 3,DPC is already an SDPP. This implies that routine tion algorithm, there are also routines for tt@mpareand
find_SDPRwhich is used iffind_PFG is no longer needed  sortmechanisms. However, these are used only for a single

in find_DPC As will be shown in Section 3.4, this would

greatly improve the efficiency of the calculation by reducing

the number of intermediate phase products.

Comparing routineanultiply_PFC and multiply_DPG
we can find two major improvements multiply_DPC

1.

Due to thefind_SDProutine infind_DPGC the operands
DPC and G, are always disjoint with each other in
routinemultiply DPC As a result, the newly generated
phase productmp is always disjoint from any phase
product in the listl. Thus, routinecomparein multi-
ply_PFCis no longer necessary multiply DPC

. Because routinénd_SDPPis not needed ifind_DPG

the sorting process isort_and_inseris no longer neces-
sary formultiply_DPC Thus routinesort_and_inseris
replaced by a simple routinmsert wheretmp is just
added at the end of lidt With respect to cardinality,
the listl in multiply_DPCis a random set of the phased

1. DPC; = find_SDP(PE;);
. add_phase_numbers(DPC;);
3. forj=1,2,---,i—1do
{
G; = inverse(PE;);
G; = find_SDP(Gj);
add_phase_numbers(G;);
DPC; = multiply DPC(DPC;, Gj);
}
4. return(DPC;);

Fig. 6. Routinefind_DPG;).

phased-system, which is more efficient than for multi-phase
systems. The strategy we use here isampareandsortin

an earlier stage where only a single phase is involved. In ST,
this is done in a later and more complex stage, i.e. after the
phase products are entangled with information from multi-
ple phases. The effect of these two approaches can be shown
in the following example.

3.4. Example 1: an illustration

In this example, we apply the MT algorithm to find the
unreliability of a PMS with configurations shown in Fig. 1.
The permutation of X, Y and Z is considered. A detailed
comparison between the ST and the MT is also shown here.
Only the logical expressions are given in this section. The
final numerical results are given in Sections 5 and 6.

Using the MT algorithm:

DPC]_ = PE]_X

(after the mincut cancellation)

=B, +C;

(after calling an SDP generation algorithm)
=B; + B,C,,

DPC;Z = ﬁlXPEZY

=B+ CA + B, Gy

(before ﬂ)plying_nul_tiply_DPCin find_DPQ2))
=B1Ci(Ay + AB; Cy)

(after the for loop infind_DPQ2))

= A;B.C; + AB;B,C, Gy,
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DPQ; = PE]_X PEZYPEZZ

(before applyingmultiply_DPCin find_DPQ3) when
=1

(after the first for loop irfind_DPQ3))

= A3B1B;C1C3(A; + B, Cy)

(before applyingmultiply DPCin find_DP(3) when
=2 _

= AgB1B3C1C3(AB; + AB,Cy)

(after the second for loop ifind_DPG3))

= AyA3B,B3C,C; + AA3B,B,C,Cs.

The final total number of disjoint phase products (DPP) for
the MT algorithm is 6.

Using the ST algorithm:
CFC = PE;;

= A3 B3 G,
PFC, = PE;xPE,y PE;;

(no mincut cancellation is applied in ST)

(before applyingmultiply PFCin find_PFQ1) when
j=2)

= (Ap + By + C)(AB, + AyCy)A3 By C3

(after the first for loop irfind_PFQ1))

= (AB,Cy + AB1Cy)A; B3 C3

(before applyingnultiply_PFCin find_PFCwhenj =
3)

= (A2ByCy + AsB1Cy)(As + B3 + Cy)

(after the second for loop ifind_PFQ1))

= A3B,C; + A3B,C, + A)B3Cy + AjBCy

(now start the routinéind_SDPRPFC,))

= A3B,C; + (A3B1C, + AB3Cy + AjB Co)(A; +

B, +Cyp)

(after routinescompareandsort_and_inseit

= A3B,C; + A3B,C, + AB Cs + AYA3B;Cy

= A3B,C; + A3B1C; + (AB1C3 + AyA3B3Cy)(Ag +
B, +Cy)

(after routinescompareandsort_and_inseit

= A3B,C; + A3BC, + AyAg BiCs + AyAB;Ci (A, +
As + By + Cy)

(after routinexompareandsort_and_inserthowPFC,
is disjoint)

= A3B,C; + A3B1C, + AyAg BiCs + AyA3B;5Cy,

PFC, = PE, PE;,

(before applyingmultiply_PFCin find_PFG2) when
=3

= (Ax + B Cy)(Ag + B3 + C3)

(after the for loop iffind_PFQ?2))

= AgB3 + AC3 + AsB; C;

(now start the routinéind_ SDPRPFC,))

= AoB3 + (AC3 + AgB; Co)(Az + Bs)

(after routinescompareandsort_and_inseit

= A;B; + AsB; C; + Ay B3C3(Ag + B, + Cy)

(after routinexompareandsort_and_insetthowPFC,

is disjoint)

= A;B; + AB; C; + A, B3Cs.
The final total number of DPP for the ST algorithm is 8.
Comparing the two algorithms, we notice that the final total
number of DPP for the MT algorithm is less than that of ST
algorithm. More importantly, however, MT generates fewer
intermediatephase products than ST. This is due to the
embedded mincut cancellation rule and the SDP generation
algorithm in the early stage of the SDPP computation.

4. Transient analysis

In the previous section, we have shown how the MT
algorithm computes the unreliability of a PMS at the end
of the whole mission. In other words, WRMS =

P PIDPC] gives us the unreliability of the system at
time pointt, wheret =3P ; T,. Sometimes, we might be
interested in getting the unreliability information at any time
point between the mission start time and the mission end
time. Among these time points, special attention needs to be
given to some certain time points: mission phase change
times (MPCT). At the transition point between two phases,
the unreliability of the PMS may rise suddenly. This would
happen if more stringent criteria apply to the next phase than
to the current phase. This is defined as htent failure
[10,29] because the system would fail instantly at MPCT.
For example, when an aircraft is flying, it does not matter
whether the landing gear is operational or not. However, as
soon as the landing phase begins, if the landing gear has
failed in an earlier phase, the system fails immediately.

Suppose that before an MPCT, the system is in Phase i,
and after it, the system is in Phdse 1. We assume that the
transition time from one phase to another is so negligible
that it is taken to be zero. If we wish to compute the unrelia-
bility of the system at MPCT, then the index of the last
phase for evaluation, denoted py isi + 1. The evaluation
time (te) for Phasep, is 0. That is, it is the failure criteria in
the later phase that account for the possible latent failure,
not the duration of the later phase. In addition, for transient
analysis of a PMS, the mincut cancellation applies only up
to the firstpe phases.

As an example, consider a PMS (Fig. 1) with permutation
Y, X and Z. If the phase durations are givenlasTy and T,
then the time pointg = Ty andt, = Ty + Ty are MPCT for
the PMS. In the following we demonstrate how the unreli-
abilities of the PMS at MPCT are computed.

At t;, the index of the last phase for evaluation is 2,
UR(PMS), = 3%, PHDPG], where

DPC1 == PE]_Y
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Table 3
The effect of latent failure at MPCT
Time (hours) System UR 1073 System URx 1072 UR jumpx 1073
10 PMS/xz 2.99550450 PMS, 1.00049817 1.99500633
20 PMS/xz 5.98203595 PMSx 5.98203595 0
(due to the mincut cancellation rule) Because the valuation time for Phase 3 is zero,
=, Pr[DPC;] = 0. Thus
DPC, = PE;yPEx UR(PMS)tZ = P{DPGC,]
=R+ B + G _— -~ ~
= A, + AB; + AB,C,, = PriAy] + P{A;B,] + P{A;B,C;]. 1y
_ Comparing Egs. (10) and (11), we notice that the Boolean
UR(PMS), = PIDPC,] expressions foDPC, are the same at both time poin{snd
= o = t,. However, since the phase durations for the two cases are
= P{A;] + P{A;B,] + P{A,B,C 2 '3 _
A2 A28, 1AeB2C2 different, the final numerical values for PPC,] are not the
= P{A,] + P{A;B;] + P{A,B,C;], sincet,=0. (10 same.

At t,, the index of the last phase for evaluation is 3, after
cancellation, DPC; = &J,DPC, =
DPC; = AyA3B;B;C,Cs.

applying  mincut

A, + AB, + AB,C, and

Using the above analysis, we obtained the unreliabilities
at MPCT forPMSxz. In Table 3, the unreliabilities at the
end of a single and double phased-systems are also
presented. From these, we can find the possible unreliability
jump due to the latent failure. If the failure criteria in a later

format 8

ftree X

basic a exp(ax)
basic b exp(bx)
basic ¢ exp(cx)
ortopabc
end

© 00 U R W N

—
(=]

ftree Y

basic a exp(a_y)
basic b exp(b_y)
basic ¢ exp(c-y)
and BCbec

or top BC a
end

et e e o
00 J & U b W N

ftree Z

basic a exp(a-z)
basic b exp(b-z)
basic ¢ exp(c-z)
and ABCabc
end

BB DN N DN DN
TR W= O ©

bind

ax 0.0001
a.y 0.0001
az 0.0001
bx 0.0001
by 0.0001
bz 0.0001
cx 0.0001
cy 0.0001

W W W W NN NN
W N = O © NS

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

cz 0.0001 67 phase-3 Y time(T.y)
Tx 10 68 end
Ty 10 69
Tz 10 70 pms ZYX
end 71 phase-1 Z time(T-z)
72 phase-2 Y time(T.y)
pms XYZ 73 phase-3 X time(Tx)
phase-1 X time(Tx) | 74 end
phase-2 Y time(T.y) | 75
phase-3 Z time(T=z) | 76 pms YX
end 77 phase-1Y time(T.y)
78 phase-2 X time(T x)
pms XZY 79 end
phase-1 X time(Tx) | 80
phase-2 Z time(Tz) | 81 expr tvalue(10; YXZ)
phase-3 Y time(T.y) | 82
end 83 expr tvalue(10; Y)
84
pms YXZ 85 expr tvalue(20; YXZ)
phase-1 Y time(T.y) | 86
phase-2 X time(Tx) | 87 expr tvalue(20; YX)
phase-3 Z time(Tz) | 88
end 89 loop t, 0, 30, 2
90 expr tvalue(t; XYZ)
pms YZX 91 expr tvalue(t; XZY)
phase-1 Y time(T.y) | 92 expr tvalue(t; YXZ)
phase-2 Z time(Tz) | 93 expr tvalue(t; YZX)
phase-3 X time(Tx) | 94 expr tvalue(t; ZXY)
end 95 expr tvalue(t; ZYX)
96 end
pms ZXY 97
phase-1 Z time(T=z) | 98 end
phase-2 X time(Tx)

Fig. 8. AsHareE input file for PMS analysis.
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value(10; YXZ):  2.99550450e-03

t=30.000000

tvalue(t; XYZ):
tvalue(t; XZY):
tvalue(t; YXZ):

3.99300865e-03
4.99149291e-03
5.98203694e-03

value(20; YX): 5.98203595¢e-03 tvalue(t; YZX):  8.95962123e-03
------------------------------- tvalue(t; ZXY):  6.97654910e-03
tvalue(t; ZYX): 8.95962123e-03

165

Fig. 9. Part of thesuarpE output for Fig. 8.

phase are more relaxed, then at MPCT, no latent failure keyword or, followed by the name of the gate (top) and
would occur. This is true when tHeMS,y; transfers from the inputs (a, b and c) to the gate.
the second phase X to the third phase Z. There is no unrelia- Lines 25 through 38 assign the failure rates for the
bility jump at MPCTt,. All the phase durations in Table 3 components and the phase durations. In this example, all
are 10 h and the failure rate for each component is 0.0001/h.the phase durations are 10 hours and the failure rates are
If the evaluation timer is between two MPCT, i.e.  ofthe same value, 0.0001/h. Thus the input data do not skew
MPCT, < MPCT.;, where MPCT =5, T, and results in any direction as all the components are similar and
1 =i < p, then the index of the last phase (denotedoby the phase durations are the same. The results are only
for evaluation isi + 1. The evaluation timet) for that affected by the sequence of the phases and the phase config-
phase is £ — MPCT,). The unreliability of the PMS at urations. Lines 40 through 74 define the six permutations of
is evaluated according to WURMS, =3P PIDPC], the three phases. In line 41, the definition of the first phase
whereT, = t.. starts with the keyworghase-1 followed by the name of
the fault tree (X) for the first phase. The time duration for the
first phase is assigned ds x by using the keywordime.
Lines 76 through 79 define a two phased system which will
be used to check if an unreliability jump would occur at
The MT algorithm has been implementedsinrek [16], MPCT. The unreliabilities at time points 10 and 20 are
a software package that analyzes stochastic modelspE evaluated forPMS/yz, the fault tree Y andPMS,x from
was developed for modeling complex real-time systems. It line 81 to line 87. The transient analysis of the six permuta-
has been used in over 220 academic institutions and indus-+ions is obtained from line 89 to line 96. From Fig. 8, it can
trial laboratories. The package provides a specification be noticed thasHARPE supports the reusability [30] of the
language and a wide variety of algorithms for analyzing phase specification. For example, Phase Y is specified for
reliability, availability, performance and performability once, butit can be used in different PMS. More importantly,
models. In this section, we present a particular example the sHarPE implementation of the MT algorithm reuses the
which shows how to ussHarpe for end-of-mission and  GKG_VT [26] as the SDP generation algorithm. The
transient analysis of the PMS as shown in Fig. 1. All the GKG_VT algorithm was implemented sHARPE in 1989.
examples mentioned in this paper can be handled by Since then, it has been used successfully for the SDP
suAarPE, and all the numerical results presented in this generation. There are several advantages [30,31] to reuse
paper were calculated ByARPE. software components in the software systems. Two related
Fig. 8 presents ssarPE input file for end-of-mission and  ones are listed below:
transient analysis of the PMS as shown in Fig. 1. Line
numbers are included only for the sake of explanation.
Line 1 specifies the number of digits to be printed in the
results after the decimal point. On lines 3 through 23, the
configurations for different phases are described by fault
trees. In line 3, the definition of eve starts with the
keywordbasicbecause the event appears only once in the
fault tree. Otherwise, the event would be specified by
the keywordrepeat An example with repeated (shared)
event will be presented in the next section. The exponential
time to failure distribution is assigned to eveéithrough the
built-in functionexpin line 3. The failure rate ia_x Line 7 Part of the output file for Fig. 8 is shown in Fig. 9. The
is a structure-defining line, defining the OR gate combining transient results are shown in Fig. 10. From Fig. 10, we
the eventsA, B and C. The gate is defined by using the can see how the unreliability of the system is affected by

5. The sHARPE implementation

e Fewer errors will occur by reusing the already tested and
used software components than developing new code
from scratch. Consequently, by reusing the software
components, the development and maintenance costs
can be reduced, and the overall software reliability is
enhanced.

e If components with sophisticated, efficient algorithms
can be reused (in this case, the GKG_VT algorithm),
the overall software product (in this case, the MT algo-
rithm) will be more efficient. This is shown in Section 3.
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0 5 10 1t5 20 25 30 6.1.2. Example 3: a PMS with dormant components in some
phases
Fig. 10. The unreliability values for the six permutations. In this example, we show how the MT algorithm handles

the PMS with dormant components in some phases.
the sequence of different phases. Unreliability jumps are Suppose that we have a simple two-phased mission system

observed at MPCT for all but one permutatid®MSyz). as shown in Fig. 12. The phase sequence is assumed to be
Low unreliabilities in earlier phases are not predictive of XY. ComponentA is dormant in Phase 1 (named ¥p In
low unreliabilities in later phases. FBMS,,x andPMSyvy, KITT-1 [1], which is a computer program using the combi-

the systems experience high unreliability jumps once they natorial approach for the PMS analysis, when a component
enter Phase 3. This is due to the stringent success criteria inis dormant in a phase, it is handled as a hot spare. That is,
Phase X. Armed with the transient analysis of PMS, the under the constant failure rate assumption, the component
system designer can gain insights among alternative designdailure rates are assumed to be the same, whether the
and select the best available scheme to enhance the robustomponent is dormant or not. In a real system, the failure
ness of the PMS. rate of a dormant component is generally much less than the
failure rate of the component when it is active. It is a well
accepted practice to approximate the failure rate of a
dormant component to be zero. Therefore, we think it is
more appropriate to consider a dormant component in a
phase as a cold spare. Consequently, the default failure
rate of a dormant component is assumed to be zero in the
MT algorithm. In addition, in our approach, it is also possi-
6.1. More examples to illustrate MT ble to assign a non-zero failure rate to a cold spare.
Now, consider another two phased mission system as

6.1.1. Example 2: a PMS with shared components in some shown in Fig. 13, whose phase sequence is also XY. The
phases only difference between the two PMS (Figs. 12 and 13) is

In Fig. 11, componenB is shared by two AND gates in  thatin Fig. 13, componemtis being used in Phase 1 as well.
PhaseR. In thesnarpk input file (which is not shown in this  However, after applying the mincut cancellation rule, Fig.
paper), the keywordepeatinstead ofbasicis used to indi- 13 can be represented by Fig. 12. Although compoAdat
cate that ever appears more than once in the fault tree but not physically shown in Phase X in Fig. 12, when the MT
represents only one physical component. algorithm uses Fig. 12 as a simplification for Fig. 13, MT

6. Experimental results

In this section, we first describe five more examples that
are used to test the MT algorithm. Then the execution times
are given for the examples presented in this paper.

A B C A C A B C
Phase R Phase S Phase T

Fig. 11. A PMS with shared components in Phase R.
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Table 4
Notation simplification

Notation
In Ref. [1] HPCS ADS LPCI-A LPCI-B LPCI-C LPCS HX-A HX-B
In Fig. 15 A B C D E F G H

will automatically retrieve the failure rate of componet 6.1.5. Example 6: a distributed computer system

for Phase 1, instead of regarding it as 0. This is achieved by In Fig. 16, we consider a modified version of a distributed

maintaining two lists for each phase in the MT algorithm. computer system modeled in Ref. [9]. The system consists
One listis to record the mincuts. The other is the component of four types of redundancy nodes:

list. For both Figs. 12 and 13, the mincuts for the two PMS .
are the same. However, their component lists for Phase X

are different. Consequently, the unreliabilities are different

(please refer to Table 6) for the phased-mission systems in
Figs. 12 and 13.

Node P has triple modular redundancy (Pa, Pb and Pc).

For the PMS to function correctly, at least two of them

must be working in Phase A. This is represented by the 2-

out-of3 gate.

¢ Node Q has quadruple modular redundancy (Qa, Qb, Qc
and Qd). Different phase has different redundancy
requirement for node Q.

¢ Node M has dual redundancy (Ma and Mb).

¢ Node R has triple modular redundancy (Ra, Rb and Rc).

6.1.3. Example 4: the tutorial example in Ref. [1]

Fig. 14 shows the PMS taken from the tutorial example in
Ref. [1]. For the two different sets of failure rates provided
in Ref. [1], the MT algorithm obtains the same exact solu- The input parameters for each phase are shown in Table 5.

tions as in Ref. [1]. 6.2, Execttion time

In order to test the MT algorithm given in this paper, we
measure the execution times for a number of phased-
mission systems. Since there is no implementation for the
ST algorithm, the execution times cannot be compared
between ST and MT. However, by including the execution

6.1.4. Example 5: boiling water reactor (BWR) system

In Fig. 15, the emergency core cooling system (ECCS) of
a BWR is considered [1]. A detailed physical description of
this PMS can be found in Ref. [1]. The notations of Ref. [1]
are simpliﬁed as in Table 4. The minguts for Phase_ 3 '€ times taken by MT as implemented #marpPE, we have
listed two times (before and after the mincut cancellation) in

. . rovided some information for the reader to judge the effi-
Ref. [1]. They are not consistent with each other and none of Eiency of the algorithm Judg
them is correct. The errors and the correction are shown in Table 6 represents the experimental results by running

the Appendix. S
: . . SHARPE for a number of examples presented in this paper.
As ment|oneq in Example 3, in Re_f. [1], componefs . The clock starts to tick when the routifand_mincutsis
andH are considered as hot spares in Phase 1. Under this —

assumption, MT yields the correct result for the unreliability called in Fig. 5. The clock stops when the unreliability of
of the PMS. which is 5.22048062 10, In Ref. [1], the the PMS at the end of the mission is found. The results are

"4 ) generated by using a SUN Ultra 1 workstation. Unless
:ﬁ;ﬁltﬂ\:\é ascg::::cutljﬁgwﬁ 5\)6ﬁ2:6c1:8m;:)§nsen@1tlgg1tejnHloe\1,\rI:r otherwise specified, the following assumptions are made:

regarded as cold spares in Phase 1, the unreliability is calcu-e the permutation order of the PMS is the same as that

lated to be 5.2203873%10 * by using the MT algorithm as shown in the related figure;

implemented irsHARPE. e the failure rate of each component is constant and the
value is 0.0001 per unit time; the time duration for each
phase is constant and the value is 10 time units;

e when a component is dormant in a phase, it is considered

Table 5
Input parameters for the PMS in Fig. 16
Phase Ap? AQ° And AR Duration
1 110 120 14 0 2
- - — - — 2 - 310 5.1 0 8
A B C B C 3 - 220 41 0 9
Phase X Phase Y 4 - 37 22 140 12

Fig. 13. A PMS where all the components are active. “The unit of the failure rates is T&unit time.
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Fig. 14. The tutorial example of Ref. [1].

as a cold spare, i.e. the failure rate of the component in
that phase is assumed to be zero.

7. Conclusion

In this paper, we extend the sum of disjoint products
formula into the sum of disjoint phase products (SDPP)
formula. An algorithm based on SDPP to analyze the

Table 6
Solutions of the PMS examples

w|—
ol—

unreliability of a PMS has been developed. The algorithm
yields exact results and is simple in concept and computa-
tion. Both end-of-mission and transient analysis of a PMS
can be carried out by the algorithm. The algorithm has also
been incorporated in the software packagerpre. With
SHARPE, the complexity of the algorithm is hidden from
the user. A PMS can be described at a high level with
fault trees. Then by running sHARrPE input file, we can
analyze quantitatively the unreliabilities of the PMS.
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PMS Total no. of mincuts
Before cancellation After cancellation DPP Times] Unreliability (x 107%)
Fig. 1 6 5 6 2305 3.99300865
Fig. 11 7 3 3 1594 8.95962123
Fig. 12 4 4 4 1866 2.99650050
Fig. 13 5 4 4 1871 3.99300567
Fig. 14 7 6 8 2894 97.3969923
Fig. 15 13 7 19 8266 0.522038735
Fig. 16 29 13 102 77541 0.127960793

2The first set of failure rates in Ref. [1] is used here.
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Fig. 15. Fault trees for the ECCS of a BWR.
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Fig. 16. Fault trees for a distributed computer system.

Appendix

The mincuts for Phase 3 in Fig. 15 are listed two times in
Ref. [1] as following. None of them is correct.

1. {HX-A, HX-B, HX-A, LPCI-B}, {LPCI-A, HX-B,
LPCI-A, LPCI-B}.

2. {HX-A, HX-B, LPCI-A, LPCI-B}, {LPCI-A, HX-B,
LPCI-A, LPCI-B}.

It is easy to verify that the correct mincuts for Phase 3

should be:

{HX-A, HX-B}, {HX-A, LPCI-B}, {LPCI-A, HX-B},
{LPCI-A, LPCI-B}.

In the simplified notation (Table 4), the mincuts are:

{G.H}.{G. DL {C.H}. {C.D}.
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