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Reliability Modeling Using SHARPE

Robin A. Sahner the analysis cannot in general be done in linear time.
Gould CSD, Urbana Methods for analyzing such structures include condition-

Kishor S. Trivedi, Member IEEE ing (using the theorem of total probability) [1] and Markov
Duke University, Durham models. Both methods are expensive; if there are n com-

ponents, the corresponding set of conditional cases or
Markov chain states can have size up to 2'. Since most

Key Words-Combinatorial model, Hierarchical model, real-world problems do not satisfy the assumptions of
Markov model, Reliability modeling. s-independence and series-parallel structure, it is important

to investigate ways of dealing with systems that generate

Purpose: To demonstrate a reliability model very large state spaces.
Speial mTh neededmfonsrae rexplanations:Elementaryproblity mThere are two aspects to the problem of handling a
Special math needed for explanations: ElementarY probability, Markov model with a large number of states: construction

math needed to use results: None and analysis. The problem of accurate construction can be
Results useful to: Reliabilityengineers and analysts handled by automatic generation of the Markov chain

from a more concise (hence less error-prone) model such as
Summary & Conclusions-Combinatorial models such as a fault tree or Petri net. Examples of programs that do this

fault trees and reliability block diagrams are efficient for model are HARP (Hybrid Automated Reliability Predictor) [2],
specification and often efficient in their evaluation. But it is dif- SAVE (System AVailability Estimator) [3] and DEEP
ficult, if not impossible, to allow for dependencies (such as repair (Duke Evaluator for Extended stochastic Petri nets) [4].
dependency and near-coincident-fault type dependency), tran- The transition rate matrices of large Markov chains are
sient and intermittent faults, standby systems with warm spares, usually sparse, but are often also stiff (the transition rates
and so on. Markov models can capture such important system can differ by many orders of magnitude). Numerical
behavjor, but the size of a Markov model can grow exponentially methods exist for solving large, sparse, possibly stiff
with the number of components in the system.with~~~~~~~~~~~~tenmeofcmoetintestm. systems of algebraic [3] or ordinary differential equationsThis paper presents an approach for avoiding the large state- s o
space problem. The approach uses a hierarchical modeling techni- [5] It is also possible to use matrix-level decomposi-
que for analyzing complex reliability models. It allows the flex- tion/aggregation methods [6].
ibility of Markov models where necessary and retains the efficien- An alternative way to deal with the large state-space
cy of combinatorial solution where possible. Based on this ap- problem is to avoid it. That is, the system under investiga-
proach a computer program called SHARPE (Symbolic Hierar- tion is modeled in such a way that the large state space is
chical Automated Reliability and Performance Evaluator) has never produced. One way to do this is to use model-level
been written. decomposition. This is the method used in CARE III [7]

The hierarchical modeling technique provides a very flexible and HARP [2, 8], where reliability models are decomposed
mechanism for using decomposition and aggregation to model behaviorally along temporal lines. The fault-occurrence
large systems; it allows for both combinatorial and Markov or behavior (a slow submodel) and the fault/error-handling
semi-Markov submodels, and can analyze each model to produce behavior a fast submodel are analyzed separatel
a distribution function. The choice of the number of levels of

W a

y y
models and the model types at each level is left up to the modeler. We have developed a hierarchical modeling technique
Component distribution functions can be any exponential that makes it possible to use mixtures of different kinds of
polynomial whose range is between zero and one. models at different levels to avoid a state-space explosion.

Examples show how combinations of models can be used to Our technique differs from models such as HARP and
evaluate the reliability and availability of large systems using CARE III in several ways. HARP and CARE III assume a
SHARPE. specific fixed hierarchy of models geared toward modeling

a chosen class of systems. Our technique allows complete
1. INTRODUCTION freedom in the number of levels in the hierarchy, which

kinds of models to use at each level, and how to combine
Combinatorial models (such as fault trees and the models. The previous efforts have used numerical

reliability block diagrams) are widely used to predict methods to obtain the reliability for a specified mission
analytically the reliability or availability of fault-tolerant time. The results therefore had to be recomputed for each
systems. These models are easy to construct and under- submodel, each set of parameters, and each value of the
stand. If component states are s-independent, reliability mission time. Our technique provides a result that is sym-
block diagrams with series-parallel (well-nested) structure bolic in the mission time variable, so each submodel need
and fault trees without repeated nodes can be analyzed us- be analyzed only once for each set of model parameters.
ing linear-time algorithms. However, if component states Work is underway to improve and extend SHARPE.
are not s-independent or the structure is not series-parallel, Possible extensions include adding loops to the input
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language, allowing fault trees to have repeated nodes, and The series-parallel graph submodel is the most general
extending the list of model types to include irreducible model. It is similar to, but more general than, series-
semi-Markov chains and one or more queueing network parallel stochastic PERT (Program Evaluation Review
models. Technique) networks [10]. In the graph model, nodes

In the next section, we introduce our approach to represent activities and arcs represent precedence con-
hierarchical modeling. In section 3, we discuss the use of straints placed on the activities. Parallel paths through the
SHARPE to analyze simple reliability block diagrams and graph can be interpreted as being executed either concur-
in section 4, we show how to use SHARPE to analyze a rently or probabilistically (one path is chosen). Each node
non-series-parallel structure. In the remaining sections, we in the graph is assigned a Cdf, and the graph is analyzed
discuss the use of hierarchical models to model repair for the Cdf of its time to completion.
dependency, near-coincident-fault dependency, and per- Submodels are combined hierarchically by using part
formance-reliability dependency. of the analysis of one submodel as part of the specificationThe words series, -parallel, series-parallel refer to con- of anotherymp.'' . of another ~~~submodel. This mechanism allows for both ex-nections in a logic diagram, not to a schematic or layout act and approximate decomposition/aggregation. One
diagram. atadapolaedcmollnageain nmethod for combining submodels is to assign the result

Cdf from a submodel as the Cdf for a basic component in
2. THE SHARPE FRAMEWORK another model. This method allows us to extract non-

We have developed a hybrid, hierarchical modeling series-parallel portions of a logic structure and pay the
framework, implemented as a software tool, that we call price of 2' states to analyze them exactly using Markov
SHARPE. Basic, built-in model types can be combined chains. Then we use the results from those portions as the
hierarchically in a flexible manner, with the number and Cdf's of basic aggregate components in the remaining
types of models at each level and the particular informa- structure and analyze it using a combinatorial solution
tion carried between the models left up to the modeler. method. This results in an exact solution.
Components in each model type are assigned functions Information can also be passed between submodels by
that are symbolic in the time variable t. The analysis of means of one or more of the scalar (as opposed to Cdf)
each model type is carried out symbolically, resulting in quantities produced during the analysis of a submodel.
another function that is symbolic in t. SHARPE makes available the mean and variance of each

The SHARPE framework provides seven model distribution produced by the analysis of a system, the value
types: of each Cdf at specified values of t (including t = 0 and

t = co), and state probabilities for Markov and semi-
1. series-parallel reliability block diagrams Markov chains. These scalars can be used in other models
2. fault trees without repeated nodes as elements in the expressions that specify probability
3. acyclic Markov chains values, transition rates, and the parameters of Cdf's. This
4. irreducible cyclic Markov chains mechanism allows approximate decomposition.
5. cyclic Markov chains with absorbing states To work with symbolic expressions for the Cdf's, we
6. acyclic semi-Markov chains need a class of functions that is closed under convolution,7. series-parallel directed (acyclic) graphs order statistics [11] of s-independent (not necessarily iden-

. . ~tically distributed) random variables, and mixing ofBlock diagram and fault tree models are specialized for distribu ted a variable and mixin of
modeling reliability and availability. The other model distributlons (weighted averages). We have chosen to use
types can be used to model performance as well. This theclass ofexponentialpolynomials thatiare valid Cdfos.
paper focuses on reliability modeling; for examples of the An exponential polynomial is a function with the form:
use of SHARPE for performance modeling, see [9]. n

To model reliability, each component in a block takt'ie"it (1)
diagram or fault-tree model can be assigned either a Cdf j=
for its time-to-failure or a simple probability that the com-
ponent has failed. The analysis of the system produces the where kj is a nonnegative integer and aj and bj are real or
Cdf of the time-to-failure of the system as a whole. To complex numbers. (A Cdf must be real-valued, even if it
model availability, each component can be assigned its in- contains complex terms). A cyclic Markov chain with ab-
stantaneous unavailability as a function of t. The analysis sorbing states can have complex numbers in the Cdf for its
of the system produces the instantaneous unavailability time-to-absorption.
function for the system as a whole. We allow the distributions to have a mass at zero

Markov and semi-Markov chains that have absorbing and/or a mass at infinity. A distribution has a mass at in-
states are analyzed for the Cdf of the time to absorption. If finity if it does not reach one in the limit, and in that case, it
such a chain is acyclic, the analysis also produces the prob- is called defective. Defective distributions are useful for
ability of ever visiting each state. Irreducible cyclic Markov modeling the performance of programs that might fail to
chains are analyzed for the steady-state probabilities of be- complete because of either software or hardware faults. An
ing in each state. example of such a model is given in section 7. Distributions
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with a mass at zero can be assigned to components that can
have a latent fault. It is possible to use distributions that cpu V
have mass only at zero and infinity. Assigning such a tmr tunier nux
distribution to a component is equivalent to assigning to rcvr cp -
the component a probability value (at some implicit time t) exponential sense
rather than a Cdf. Examples of the use of such distribu- X=200E-6 L
tions are given in sections 3 and 5. aclive redundancy standby redundancy

The SHARPE program consists of about 4800 lines of eq25a-6sequal tates6 2 iLiiO 3
code in C [12] and runs under UNIX or VMS. It is a full im- Xs=-5t-6 'tlll"
plementation of the modeling technique and has been tested
extensively. The specification language supports general Fig 1 A Relcomp-type System
well-formed arithmetic expressions and user-defined
functions and Cdf's of any number of parameters. SHARPE can emulate the Relcomp program by using

only type 1 models (reliability block diagrams). The file in
3. EMULATING RELCOMP table 2 is a SHARPE input file. (Line numbers are included

only for the sake of exposition.) The SHARPE input
The Relcomp program [13] is a reliability block- language is described in detail in [14]. On lines 3 through 33,

diagram analyzer. With the exception that SHARPE can- we define the Relcomp built-in distribution functions from
not handle the Weibull distribution, SHARPE can analyze table 1. (Relcomp uses reliability functions while SHARPE
any Relcomp-type system, and the flexibility of the uses failure-time functions.) Each of the first four distribu-
SHARPE interface allows it to present a user interface tions is defined by giving all of the exponential polynomial
similar to that of Relcomp. This emulation uses only a terms aj, kj, bj; see (1). Line 25 defines the component type
small portion of the power of SHARPE, but it is a good in- oneshot, which is assigned a probability value (the prob-
troduction to its use. ability of immediate failure) rather than a distribution func-

Relcomp uses numerical integration (Simpson's rule) tion. The binomial distribution (line 32) is defined to be the
to compute the probability of survival until a user- Cdf of the system KN, which is a (n - k + I)-out-of-n:F
specified time t for a series system in which there is no system.
repair. Redundancy in the form of active or standby spare Lines 35 through 41 define the system in figure 1. Line
units is brought in by allowing the basic components in the 43 asks that the Cdf for the time-to-failure of the system be
series system to have reliability functions chosen from a set printed. To obtain the probability of being operational at
of pre-computed functions including those in table 1. A time t = 20, we must evaluate the Cdf at t = 20 and sub-
Relcomp-type system from [13] is shown in figure 1. tract from one. Line 44 asks SHARPE to do this. The result
Relcomp computes the probability that the system is func- agrees with that produced by Relcomp. Table 3 shows the
tioning at time t = 20 as 0.99581. output for the input file of table 2. These results were pro-

duced in less than 0.1 second on a lightly loaded Gould
TABLE 1 PowerNode 9080 running UTX/32.

Relcomp Reliability Functions
TABLE 2

R(t) = exp( - Xt) single exponential, with failure rate Input File for Relcomp-type System

R() = 2exp(-Xt) - exp(-2Xt) active redundancy, 2 units with 1 *-"mulatiiig tli REICOHP program 24
2 25 poly on..hiotlpl probtI-p)

equal failure rates X 3 poly vct.v8e (lambda) ger\ 26
4 I, 0\ 27 block KN (lambda, k, r)

R(t) = (exp(-Xat) + exp(-Xbt) active redundancy, 2 units with un- 6 ;2,0 - IOnAd.\ 28 comp x txp(l&mhd&)6 0,0- 2'1 amda 29 kbet, toep 51k-,, x

-exp[- (Xa + X0)t] equal failure rates Xa (primary) and tin 9 30 e*.d
8 poly 2cie)(abom)yn 1

Xb (secondary) 9 1.0,0\ 32 poly binomil (l1mbd., k,si)\
20 -1,0,-Imbds\ 33 cdf (KN;1&mbd&,k,n)

R(t) = exp(- Xt) standby redundancy, 2 units with , 0, - Im\ 35b4ock DP
+ exp(- X,t)Xtexp(-Xt) equal failure rates X and a sensing 1 3 ydbyS tl.obd.. * 36 comip r.tunr xpc(10002)

14 poly tn yE(aba a)g\ 37 comp tun*r actJveEt.000025t
switch with failure rate X, 15 10.,0\ 38 coop mux mt.ndbyE(.00025. .000005

16 -1.0,-iambd1\ 39 comp cpu blnomi.l(.0004, 2, 3)
R(t)= exp( - Xt) + exp( -X) 17 -1&mbd&.1, - (l&mbdc*c) 40 sries DP r-c.iv-r tun.r mux cpuRQt) = exp(-Xt) + exp(-A/t) a18 41 *nd

r _1 19 poly *t.dbyU i1.obde.e,)1 g-n\ 42

IXa 20 1,0,0\ 43 dft(DP)[x _ X 2(exp(-X t) - exp(-XXA)) standby redundancy, 2 units with 21 -1,0,-1bd.l44mbde 44 expr I-v(c20;Pt)
L aJ unequal failure rates X0 (primary) 23p i^iu1mds0-m+)

and Xb (secondary) and a sensing ~
switch with failure rate X5s

R(t) = P single, one-shot system, with prob- Tepwro H REcnetn h ecm
ability P of success Tepwro H REcnetn h ecm

m model to include k-out-of-n systems where the components
R(t) = s (7) (exp(- Xt))0~i binomial (rn-out-of-n) system), with are not identically distributed, and (by using Markov sub-

(I - exp( -Xt))' equal failure rates X. models) redundant systems with varying numbers of active
and standby spares.
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TABLE 3 TABLE 4
Output from SHARPE for the File in Table 2 Input for Non-Series-Parallel System

CDF for system DP: poly bridge(ul,u2,u3,u4,u5) gen\ block b
1,0,O\ comp 11 exp (ull)
-1,0,- (ul+u4)\ comp 12 exp (u12)

-1.5000e-03 t( 1) exp(-1.2800e-03 t) -1,0,-(u2+uS)\ comp 14 exp (u14)
+ 7.5000e-04 t( 1) exp(-1.3050e-03 t) -l,0,-(ul+u3+uS)\ comp 13 exp (u13)
. 1.00OOe-03 t( 1) exp(-1.6800e-03 t) -i,O,-(u2+u3+u4)\ comp 15 exp (uls)+

-5.00Oe-04 t l) exp(-1.700e-03 t) 1,0,-(ul+u2+u3+u4)\ comp A brldge(ul,u2,u3,u4,u5)+ -5.OOOOe-04t( 1) exp(-1.7050e-03 t) l,O,-(ul+u2+u3+u5)\ comp B bridge (u6, u7, u8, u9, ulO)
. 1.0000e+00 t( 0) exp( 0.0000e+00 t) 1,o,-(ul+u2+u4+u5)\ parallel C 12 13

+ -6.OOOOe+00 t( 0) exp(-1.2750e-03 t) l,o,-(ul+u3+u4+u5)\ series D 11 B C
. 3.0000e+00~t 0) exp(-1.30OOe-03 t)1,0,- (u2+u3+u4+u5)\ series E 14 A 15+ 3.0000e+00t( 0) exp(-1.3000e-03 t) -2,0,-(u14u2+u3+u4+U5) parallel top D E

+ 4.0000e+00 t( 0) exp(-1.6750e-03 t) end

+ -2.0000e+00 t( 0) exp(-1.7000e-03 t)

mean: 1.4794e+03
variance: 1.2465e+06 5. REPAIR DEPENDENCE

Consider the Carnegie Multiprocessor system,
C.mmp, having 16 processors, 16 memories, and a switch

1-value(20; DP): 9.9581e-01 [15]. The system is up if the switch, at least four pro-
cessors, and at least four memory units are up. The condi-
tion under which the system is down is expressed by the

4. A NON-SERIES-PARALLEL BLOCK DIAGRAM fault tree (a type 2 model) in figure 3. Based on a parts

Suppose we want to compute the Cdf of the time-to- count method and the use of MIL-HDBK data, the failure

failure of the system shown in figure 2. Because it has two rate of each processor is 68.9 failures/106 hours, that of
non-series-parallel bridge subsystems, this system cannot each memory unit 224/106 hours and that of the switch
be analyzed using a common block diagram method like 202/106 hours [15].
Relcomp. We need to analyze the bridge subsystems
separately. We can then replace each bridge subsystem by a Failure
single aggregate component, resulting in a series-parallel
block diagram that can be analyzed easily for an exact
result. 6 13/16

There are several methods available for analyzing a oy switch
bridge subsystem. If all of the components had exponential f stem ais fails lroeyssor
failure-time distributions, we could use a Markov chain. I

memory memory riremory processor processor .... processor
Instead, we have chosen to pre-analyze the bridge system s ails 1tails1 fails 2 fails 16 fails

by hand, using conditioning on whether the crossover com-
ponent (3 in the bottom subsystem) is functioning. This
method can be used whether the component time-to-failure Fig. 3. Fault Tree for C.mmp System.
distributions are exponential or not (here we assume they
are exponential). A SHARPE specification for the system If the units are repafrable and each individual unit has
is shown in table 4. After defining the Cdf bridge, having its own repair facility, we can assign to each component its
five parameters, we define a reliability block diagram con- instantaneous unavailability function [1]:
taining aggregate nodes A and B in place of the two bridge
subsystems; the Cdf attached to each aggregate node is
bridge called with appropriate parameters. Ui(t) = exp[- (Xi + Ai)tl (2)

Xi + A~i
where Xi is the failure rate, and /i is the repair rate. The
Ui(t) is defective. The SHARPE analysis of the system pro-
duces the system instantaneous unavailability. Setting ui =

source /- sinik 0 in (2) yields the Cdf for the time-to-failure of the compo-~~~~~~~~nent. We may allow some components to have a repair
<>CR ~~~~~~~facility and others to be non-repairable by letting i,^4 be zero

T,E~~ ~~~~for some components and nonzero for others. If we assign
< 2 ) (5> ~~~toeach component its steady-state unavailability,

lim U,(t) = Xi(3)
Fig. 2. A Non-Series-Parallel Reliability Diagram. X,)\ + p4
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the SHARPE analysis produces the system steady-state un- faults can be modeled, and it illustrates the flexibility of the
availability. In this case we are assigning to each compo- SHARPE hierarchical combination mechanism. We begin
nent a probability value, instead of a probability function with a single-level model and add levels as we show how the
with a time parameter. model can be refined and how aggregation can be expressed

If repair facilities are shared within each subsystem in- in the SHARPE framework.
stead of having a separate repair facility for each unit, com-
ponent behavior is no longer s-independent. We can avoid Wen consider The controltsy ns modee ineap
a large Markov model by exploiting the s-independence pendi Gnof [. e mctthree iner
across subsystems; we can model each subsystem as an in- reference sensors (IRS), three pitch rate sensors (PRS), four
dependent Markov chain and still model the overall system computer systems (CS), and three secondary actuators
by a fault tree. Figure 4 shows the Markov chain (a type 4 (SA). At least two of each type of component must be
model) for the memory subsystem. Each state name gives operational for the overall system to function correctly. If
the number of failed memories in the system. The steady- all components operate (and fail) s-independently and
state unavailability for the subsystem is the sum of the system reconfiguration after a failure is perfect, we can
steady-state probabilities for states 13-16. To incorporate model the system using the fault tree in figure 5. SHARPE
this lower-level model into the fault tree, we replace the calculates that the probability of failure during an interval
gate memory system fails and all of its inputs by a basic of 10 hours is 1.02 x 10-6.
event assigned the above sum of state probabilities as its
steady-state unavailability. The processor subsystem and
switch are handled similarly. Failure

16*mf 15'mf 2*mf mf

X = .000015 X .000019 X =.00048 X = .o00037
12013 P2o 3 C3014 S2o1S

mr mr mr mr

Fig. 4. Markov Chain for Memory Subsystem.

Table 5 compares the steady-state availability for Fig. 5. Aircraft Control System: Fault Tree.
repair-per-component versus repair-per-subsystem for
various memory and processor average repair times (the The fault-tree model does not take into account the
average repair time for the switch was assumed to be 2 possibility of intermittent faults or the possibility that the
hours throughout). As anticipated, steady-state availabili- system might not be able to recover properly from an error.
ty decreases as repair time increases, and the steady-state We can use a 2-level model to include these possibilities.
availability is higher for repair-per-component. In fact, we Because in this system the computers are most susceptible
had to increase the repair times to unrealistic amounts to to failure, we model the computer subsystem more exactly.
see the differences. This is because given the amount of The Markov chain in figure 6 (a type 5 model) is a more
redundancy and degree of reliability of the processors and detailed model of fault/error handling. A distinction is
memories, the availability of the system is determined made between a fault and an error [17]. A fault may occur
almost entirely by the failure and repair times for the single at e b utt nd an error right aay or
switch.~~ ~ ~ ~Th.eutntbe5wr rdcdi bu n

at any time, but it need not cause an error right away. For
switchn. Th RE int 5 w poucd inwabout one example, the failure of a memory module is a fault, but ansecond by SHARPE running on a Gould PowerNode 9080.

error does not occur until one of the computers tries to read
TABLE 5 from that memory module. Each system monitors itself

Effects of Sharing Repair Facilities periodically to check for faults and errors.

steady-state availa- steady-state availa-
average memory average processor bility (repair per bility (repair per 5=360

repair time (hours) repair time (hours) component) subsystem) fauIt recovered

I 1 .999596163 .999596163
15 20 .999596163 .999596163 p180 error l P

100 100 .999596163 .999596162I 20
200 200 .999596163 .999592057L -30£=360
1000 1000 .999596080 .651090056 (1-p)e £ .P-999/

(benign)
6. MODELING INTERMITTENT AND faIledA

NEAR-COINCIDENT FAULTSC
This example has two purposes: it shows how the

dependency introduced by intermittent and near-coincident Fig. 6. Fault/Error-Handling Model.
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In state fault, a fault has occurred in one of the com-
puters. At this point, one of three things might happen. a I _ ecovered 4 -9/2)
With rate 6, the system detects the fault and recovers, con- t3 tQ)
tinuing to run with one less computer. With rate ca, the 4X(1c(3)) 3X (c1))
fault (which is intermittent) becomes benign. While the k P)4-ekX
system is in state benign, the fault will not cause an error. e tolled
Eventually, the fault will become active again. With rate p,
an error (owing to the fault) occurs. The error detection a) lowest level b) middle level
rate is e. If the system can recover, the error is covered, and
the system goes to state recovered; if not, the system goes Fig. 7. Markov Chains for 3-level Model.
to state failed. An error is covered with probability p.

The complete lower level model consists of two of Because the coverage values c(k) depend on k,
these fault/error-handling chains strung together, one for SHARPE has to reanalyze the lowest-level model of figure
handling a fault/error that occurs when 4 computers are 7a for each value of k. With a model of this size, the ex-
operational, and one for when 3 computers are opera- pense of doing that is negligible, but it is interesting to see
tional. A fault while two computers are operational causes how we can extend the model one further level (to 4 levels)
immediate system failure. to avoid some of that extra computation.

To incorporate this lower-level Markov model into the Let the bottom-most level consist of the single-
fault tree we replace the gate C3of4 and its four inputs by a fault/error-handling model of figure 6. At the next level
basic event having the Cdf of the time to reach absorption up, we use the semi-Markov model (type 6) shown in figure
in the Markov chain. When this two-level model is ana- 8. When a fault has occurred, two processes compete. The
lyzed with p = 0.999, the probability of failure during an first is the fault/error-handling model of figure 6. This
interval of 10 hours is computed to be 7.40502 x 10-6. process completes when state failed or recovered is
There is a noticeable increase in the likelihood of a failure, reached. If this process finishes first, we go to state re-
even with a high coverage value. solved in figure 8. The second process is the occurrence of

So far, we have assumed that a second (near-coinci- a second fault, happening at a rate of kX (a state-dependent
dent) fault does not occur while a fault is being resolved. rate). The fault is covered if the fault/error-handling pro-
Suppose the occurrence of a near-coincident fault causes the cess finishes first and if, within that process, the state
system to fail. We could refine the model of figure 6 to in- recovered is reached rather than failed. Thus the coverage
clude the possibility of a second fault while in states fault value is the probability of reaching state resolved in figure
and error. Instead, we will expand to a 3-level model, with 8 multiplied by the probability of reaching state recovered
the bottom two levels expressing behavioral decomposition in figure 6. We still have to analyze the model of figure 8
of the fault/error handling process [2, 8]. for each value of k, but we only have to analyze the single-

Behavioral decomposition is based on the premise that fault system one time. The price for this savings is another
a long time passes between faults, but that the resolution level of approximation: in the 4-level model, a fault that
of faults happens quickly. Based on this assumption, we occurs while another fault is in the benign state causes the
model separately the fault/error-occurrence and system to fail, while in the 3-level model it does not. The
fault/error-handling behavior of the system. Figure 7a probability of failure is 7.49546 x 10-6, higher than that
shows the fault/error-handling model, which is the lowest- for the 3-level model.
level model. The rate at which the second fault occurs is
kX, where k is the number of components that remain
operational after the occurrence of the first fault. cdf(single-fault) olved

Figure 7b shows the middle-level, fault/error-
occurrence model (type 3) for this system. State k
represents the system when k computers are operational. fault
From state k, we go to state k - 1 if there is a covered
failure and the number of operational computers has not k
fallen below 2. We go to state F if there is an uncovered fau t2
failure or the number of operational computers falls below J
2. The coverage value c(k) (which is state-dependent) is the ~
probability of reaching state recovered starting with state
fault in the lower-level model of figure 7a with an ap- Fig. 8. Semi-Markov Chain in 4-level Model.
propriate value for k. The middle-level model replaces gate
C3of4 in the fault tree of figure 5. For the 3-level model, 7. PERFORMANCE-RELIABILITY DEPENDENCE
the probability of failure during 10 hours iS computed to
be 7.46150 x 10-~6. As anticipated this is a little higher than When a program runs in a failure-prone environment,
in the 2-level model. performance-related measures (such as response time) and
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reliability measures (such as the probability of program zero of the Cdf is zero, the mass at infinity is 0.0018694,
completion) are s-dependent on each other. The task (this is the probability that a processor failure prevents the
system in figure 9 (a type 7 model) is the producer- task system from completing), and the remaining mass
consumer model with two messages. Nodes P1 and P2 (called the continuous probability) is 0.99813. This con-
represent the tasks of producing messages 1 and 2, and tinuous probability is the probability that all tasks finish
nodes Cl and C2 represent the tasks of consuming those before their respective processors fail. Lines 8 through 18
messages. There are two processors, one dedicated to pro- give the Cdf for the task system and its mean and variance.
ducing messages and one to consuming them, each of The mean and variance are conditional on the finishing
which might fail. We want to compute the distribution of time being finite, because the actual mean and variance of
the finishing time of the task system and the probability a defective distribution are infinite and hence give no
that it finishes before a failed processor prevents further useful information.
execution.
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