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Chapter 1

Introduction

1.1 Symbolic Hierarchical Automated Reliability and Per-

formance Evaluator(SHARPE)

Today’s computer system design has become more and more complicated, so it is hard

to predict the reliability, availability and serviceability characteristics of the resulting sys-

tem. Also, it is too expensive and time-consuming to build even one prototype to take

measurements. Even when that is not the case, if the model is a good match for the sys-

tem, designers can more easily and quickly carry out trade-off studies, and compare design

alternatives.

Generally, there are two kinds of models, discrete-event simulation models and analytic

models, to help designers predict system behavior without having to build and measure a

real system. For discrete-event simulation models, designers build a program to repro-

duce the running behavior of the modeled system and take measures of the behavior. On

the other hand, for analytic models, designers use a set of formulas or equations to de-

scribe the system. By solving these equations, designers get the measures of the system.

Although discrete-event simulation models provide more details of the system behavior,

they consume more time and more computer resources than analytic models. The situation

may become worse when designers want to vary many of the parameters of the system for

many times. Analytic models are better abstractions of systems. But analysts have to be

very careful on how to abstract these real-world systems.

SHARPE (Symbolic Hierarchical Automated Reliability and Performance Evaluator)
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is a software tool that analyzes a specific class of analytic models – stochastic models. It

accepts a specification language, called SHARPE language, for building single or hierar-

chical combinations of analytic models and for choosing proper algorithms for analyzing

them. Originally, SHARPE provided analysis algorithms for the following model types:

� Reliability block diagrams

� Fault trees

� Reliability graphs

� Series-parallel acyclic directed graphs

� Single-chain and multiple-chain product-form queueing networks

� Markov and semi-Markov chains

� Generalize Stochastic Petri nets

SHARPE language gives users the power to choose models that are a proper match

of the problem under investigation and it is up to users to interpret the parameters of the

system and the results of measurements in a meaningful way. So, users can freely deploy

all the above models on any systems if necessary. In the SHARPE test-bed, different

system examples, such as multiprocessor system, wireless system, software system, and

token ring system, etc., are included. Another big plus for SHARPE is that it supports

hierarchical modeling, which can solve very complicated systems without causing stiffness

or largeness.

Programming of SHARPE began in the early 1980s, in C language. The first version

appeared at 1986. At that time, computer world was still lacking the ideas of compiling

tools such as lex and yacc. As time passed, more and more models have been added into
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SHARPE which has gradually made the code, especially the language parsing part, difficult

to manage. It has become more and more difficult to add new model types into SHARPE or

to extend the SHARPE language syntax. So, flex – an advanced version of lex, and Bison

– an advanced version of yacc have been used to reconstruct SHARPE. The C language

compiler used is GCC. Introduction to flex, Bison and GCC is given at the section 1.2.

Details of work that has been done in this project are listed at the section 1.3.

1.2 Tools used

1.2.1 GCC

GCC stands for ”GNU Compiler Collection”, where GNU was chosen following a hacker

tradition, as a recursive acronym for ”GNU’s Not Unix”. GCC can compile programs

written in C, C++, Objective C, Fortran, Java and CHILL. The main goal of GCC was

to provide a good, fast compiler for computer platforms in the class that the GNU system

aims to run on: 32-bit machines with 8-bit addresses bytes and several general registers,

include AIX, DOS, HP-UX, SCO OpenServer/Unixware, Solaris (SPARC, Intel), SGI, and

Windows 95, 98, NT, 2000. So, having been compiled successfully by GCC, SHARPE

can easily be deployed on those popular platforms.

1.2.2 flex

flex, also from GNU, is a tool for generating lexical scanners, which are programs for

recognizing lexical patterns in text. At first, flex reads a description of a lexical scanner

from the given input files, or its standard input if no file names are given. The description

is in the form of pairs of regular expressions and C code, called rules. According to the

description, flex generates a C source file, ’lex.yy.c’, which defines a routine ’yylex()’. This
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file should be compiled and linked with the ’-lfl’ library to produce an executable. When

the executable is running, it analyzes its input for occurrences of the regular expressions.

Whenever it finds one, it executes the corresponding C code.

The flex input file consists of four sections, separated by a line with just ’%%’ in it:

%f

C declarations

%g

definitions

%%

rules

%%

Additional C code

The C declarations section may define types and variables used in the actions. One

can also use preprocessor commands to define macros, and use #include to include header

files that do any of these things.

The definitions section contains declarations of simple name definitions to simplify the

scanner specification, and declarations of start conditions, which supports conditionally

activating rules.

The rules section of the flex input contains a series of rules of the form:

pattern action

where the pattern must be un-indented, which is written using an extended set of regular
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expressions, and the action must begin on the same line, which can be any arbitrary C

statement.

The additional C code section can contain any C code one wants to use.

The reason to choose flex rather than lex is that lex cannot handle languages, such as

SHARPE language, having too many tokens.

1.2.3 Bison

Bison, as a GNU tool, is a general-purpose parser generator that converts a grammar de-

scription for an LALR context-free grammar into a C program to parse that grammar. It

is upward compatible with Yacc: all properly-written Yacc grammars ought to work with

Bison without change. Bison reads a Bison grammar file as input. The output is a C source

file defining a function named yyparse, and the file is called a Bison parser. The job of the

Bison parser is to group tokens into sets according to the grammar rules – for example, to

group identifiers and operations into expressions. when it does this, it runs the actions for

the grammar rules. The tokens come from a function called the lexical scanner, which, in

this project, is the function yylex generated by flex.

The general form of a Bison grammar file is as follows:

%f

C declarations

%g

Bison declarations

%%
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Grammar rules

%%

Additional C code

The C declarations may define types and variables used in the rules’ actions. You can

also use preprocessor commands to define macros used there, and use #include to include

header files that do any of these things.

The Bison declarations declare the names of the terminal and non-terminal symbols,

and may also describe operator precedence and the data types of semantic values of various

symbols.

The grammar rules define how to construct each non-terminal symbol from its parts.

The following rule defines a non-terminal line as newline character:

line : ’nn’

;

The additional C code can contain any C code one wants to use.

1.3 Work of reconstruction

The programming of SHARPE began in the early 1980s, in C language. First version was

released at 1986. At that time, computer world was still lacking of the ideas of compiling

tools such as lex and yacc. As time passed, more and more models have been added

into SHARPE which has gradually made the code, especially the language parsing part,

difficult to manage. It has become more and more difficult to add new model types into

SHARPE. So, flex – an advanced version of lex, and Bison – an advanced version of yacc
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have been used to reconstruct SHARPE (See Figure 1.1). Of course, the new version of

SHARPE, which is backward compatible to the old version, supports old language syntax

and all model types listed in section 1.1, Phased-mission systems, Multi-state fault trees,

and repeated edges in reliability graphs from Xinyu Zang’s work [18], Markov regenerative

process from Wei Xie’s work [17], and Stochastic Reward Nets, which is implemented by

me. There is also fast Mean Time To Failure(MTTF) algorithm for Markov chains and

semi-Markov chains [6], which is implemented by Wei Xie. All new changes to SHARPE

are represented by rectangles with thick lines in Figure 1.1.

The only exception is the definition of a name. Now only any number of letters, digits,

underline, and colon are used to define a name. Names can be any length, but SHARPE

only looks at the first 29 characters, beyond that, SHARPE will ignore and provide a

warning message to users.

Another extension to SHARPE language syntax is that numbers can be represented in

scientific format so that 0:1 can be written as 1:0E�1, which can ease the burden on users

when coding their SHARPE input files.
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Lexical Rules Grammar Rules

yylex() yyparse()

C code for the new parser of SHARPE with
syntax extensions

New SHARPE Source Code

C code for newly integrated model types and features:
Phased-mission systems, multi-state fault trees,
markov regenerative process, repeated edge in

reliability graphs

C code for newly implemented model type:
stochastic reward net

Parsed by flex Parsed by bison

C code for old model types

Figure 1.1: New SHARPE Construct
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Other extensions to SHARPE language syntax will be mentioned when specific model

types are introduced in subsequent chapters.

The new version of SHARPE accepts the following model types:

� Reliability block diagrams

� Fault trees

� Phased-mission systems

� Multi-state fault trees

� Reliability graphs with possibly repeated edges

� Series-parallel acyclic directed graphs

� Single-chain and multiple-chain product-form queueing networks

� Markov and semi-Markov chains

� Markov Regenerative Process

� Generalize Stochastic Petri nets

� Stochastic Reward Nets

There is also a test-bed which contains 41 directories and 978 test cases. The correctness

of the new version of SHARPE is based on these test cases.

1.4 Scope of the thesis

The remainder of this thesis is organized into 2 chapters, as follows. Chapter 2 introduces

how Stochastic Reward Nets (SRNs) has been implemented in SHARPE. Chapter 3 intro-
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duces all the model types which have been integrated into the new version of SHARPE.

Examples have been selected to excise the features introduced. Appendix A includes all

important data structures in SHARPE. Appendix B includes a partial SHARPE GUI doc-

ument. Appendix C includes extra examples referenced in this thesis.
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Chapter 2

New Model Type in SHARPE – Stochastic
Reward Nets (SRNs)

2.1 Background

2.1.1 Petri Nets (PNs) and Generalized Stochastic Petri Nets (GSPNs)

Petri nets (PNs) were introduced by C.A. Petri in 1962 [12]. As a a bipartite directed

graph, a PN consists two types of nodes: places, P , and transitions, T . Its directed arcs

fall in two categories: input arcs, which lead from an input place to a transition, and output

arcs, which connect a transition to an output place. Arcs cannot connect the same type

of nodes, such as from places to places or from transitions to transitions. A non-negative

number of tokens can be assigned to each place. A marking m 2 M is defined as a

possible distribution of tokens to all places in the PN. Let P denotes the set of places.

Then a marking m represents a multi-set, m 2 M � IN
jPj, describing the number of

tokens in each place. See Figure 2.1. We use circle to denote a place, and a rectangle

or a bar to denote a transition. Places represent conditions in the system being modeled.

Transitions represent events occurring in the system. Input arcs are directed arcs from

places to transitions representing the requirement or conditions for the event, which is

denoted by the transition, to be triggered; output arcs are directed arcs from transitions to

places representing the state or condition resulting from the occurrence of an event; input

places of a transition are the set of places that are connected to the transition through input

arcs; output places of a transition are the set of places to which output arcs exist from the
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transition.

Figure 2.1: Basic components of a Petri net

A transition is enabled in the PN if the conditions for the corresponding event are met,

which means all of the transition’s input places contain at least one token. A transition is

always enabled if there is no input arc connected to it. In the situation when more than

one transitions is enabled, priority may be introduced to resolve the conflict (see Chapter

2.1.2). When an enabled transition fires, one token from each input place is removed and

one token is added to each output place (See Figure 2.2). The firing of a transition may

transform a PN from one marking into another, changing the state or condition. Marking of

a Petri net is the distribution of tokens among the places of the net. Given an initial mark-

ing, the reachability set, RS , is defined as the set of markings reachable through any firing

sequences of transitions beginning from the initial marking (See Figure 2.2). A reacha-

bility graph is represented as a directed graph with markings as its nodes and marking-to-

marking transitions as its directed arcs. Depending on the situation, aRS could be infinite.

Markings in which no transition is enabled are called absorbing markings.

Arcs of PNs can be extended to define arc cardinality or multiplicity. A transition

is enabled when each input place connected to it contains at least as many tokens as the

cardinality of the input arc. When the transition fires, the number of tokens removed from

12



Figure 2.2: Enabling and Firing of Transitions

Figure 2.3: Reachability Set

the input place is the cardinality of the corresponding input arc, and the number of tokens

added into the output place is the cardinality of the corresponding output arc (See Figure

2.4).

Further, inhibitor arcs are introduced as the third category of PN arcs. An inhibitor

arc is drawn from a place to transition. The place is called inhibitor place. Inhibitor arc

inhibits the firing of a transition when the corresponding inhibitor place has at least as

many tokens as the cardinality of the corresponding inhibitor arc, even under the situation

that all other conditions for enabling the transition are met. Inhibitor arcs are also directed

arcs with a small circle rather than an arrow-head showing its direction (See Figure 2.4).
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Figure 2.4: Extension of GSPN 1

Another way of extending PNs is to assign time with the firing of transitions, resulting

in timed Petri nets. Generalized Stochastic Petri Nets (GSPNs) are one of them. In GSPNs,

there are two types of transitions: timed transitions whose firing time is exponentially

distributed and immediate transitions whose firing time is constant zero. Timed transitions

are denoted by empty rectangles, while immediate transitions are drawn as bars.

The markings in the reachability set RS of a GSPN are partitioned into two sets: the

vanishing markings V and the tangible marking T . So, M = V
S
T . Vanishing markings

are those in which at least one immediate transition is enabled. Since vanishing markings

are not resided in for any non-zero time and firings are acted instantaneously, the priority

of immediate transitions is always higher than that of timed transitions.

Since computers have limited resource, only bounded GSPNs, whose underlying reach-

ability sets are finite, are considered. Under the condition that only a positive number of

transitions can fire in a finite time with non-zero probability, there is exactly one Continu-

ous Time Markov Chain (CTMC) that corresponds to a given GSPN [10].
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2.1.2 Stochastic Reward Nets (SRNs)

Stochastic Reward Nets (SRNs) are based on GSPN but extend them further [3]. Some of

the most prominent extensions are revisited in the following: priorities, guards, marking

dependent arc multiplicity, marking-dependent firing rates, and reward rates defined at the

net level.

Priorities: As mentioned in the previous section, priority is important when more than

one transition is enabled at the same time. Although inhibitor arcs can be used to achieve

priority relationships, for the purpose of simplifying the model description, explicit priori-

ties can be assigned to transitions. Priorities are specified by assigning integer numbers to

transitions. A transition is enabled only if there is no other transition with a higher priority

enabled.

Guards: The guard functions are similar to the inhibitor arcs, but can use the entire

state of the net rather than just the number of tokens in places. They determine when tran-

sitions are to be enabled. This feature provides a powerful means to simplify the graphical

representation and to make SRNs easier to understand in a more general way compared to

the use of inhibitor arcs.

Marking-Dependent Arc Multiplicity: This feature provides a way to change the

structure of SRNs. For example, when a critical component of the system is down, the

system is down. The way for us to represent the situation is to flush all places which have

number of tokens representing available resources in the system. The example showing the

use of this feature is in the section 2.4.5.

Marking-Dependent Firing Rates: The firing rate of a transition may depend in a

rather general way based on the current marking of the net. In the implementation, there are

two ways: one way is to use rate functions, which are similar to guard functions and reward

15



rate functions; another way is to use the number of tokens in a chosen place multiplying

the basic rate of the transition, which is called place-dependent firing rate. For the first

situation, there is a SRN example of Markov Modulated Poisson Processes (MMPPs) [4]

in the right part of Figure 2.5. The firing rate of the transition T3 depends on whether there

is a token in the place P1. When there is one and only one token in P1, the firing rate is

a1; Otherwise, it is a0. Since there is an inhibitor arc from P1 to T1, P1 can only have one

token at most.

Figure 2.5: Extension of GSPN 2

The left part of Figure 2.5 shows the corresponding CTMC which decides the firing

rate of the transition T3.

Reward Rate Specification: The basic output measures obtained from a SRN are the

throughput of a transition and the mean number of tokens in a place. But that’s far from

enough. Normally, more general information, such as the probability that a place is empty

while another one is full, or the sum of the number of tokens in a set of places, is necessary.

Since it is at the net level rather than at the place level, reward rate functions are introduced.

Compared to GSPN, SRN provides more power and eases the work of translating real-

world systems into analytic models. That’s why SRN has been implemented in SHARPE.
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2.2 How to solve

First, consider a computing system model (example 2.4.1) shown in Figure 2.8.

Next step, the SRN in Figure 2.8 is converted into the corresponding reachability graph.

Figure 2.6 shows the reachability graph. Notice that vanishing markings are shown as

dotted rectangle.

Figure 2.6: The Reachability Graph for the system in Figure 2.8

Figure 2.7: CTMC after deleting vanishing markings from Figure 2.6

Assign rates and probabilities to each arc in the reachability graph, and eliminate all
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vanishing markings. The corresponding Continuous Time Markov Chain is shown in Fig-

ure 2.7, where, respectively, �w and �f are the failure rates of each workstation and the file

server, and �w and �f represent the repair rates of each workstation and the file server.

For transient analysis, randomization [15], sometimes called uniformization, is used to

solve the problem. For steady-state analysis, Gauss-Seidel and Successive Over-Relaxation

are used.

2.3 Implementation

2.3.1 Syntax for SRNs

The syntax for SRN models in SHARPE is as the following:

srn name f(param list)g

� section 1: places and initial numbers of tokens

<place name expression>

end

� section 2: timed transition names, types and rates

f

<transition name ind expression fguard expression g fpriority expressiong>

<transition name placedep place name expression fguard expression g fpriority

expressiong>

<transition name gendep expression fguard expression g fpriority expres-

siong >

g

end

� section 3: immediate transition names, types and weights
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f

<transition name ind expressionfguard expression g fpriority expressiong>

<transition name placedep place name expressionfguard expression g fpriority

expressiong>

<transition name gendep expression fguard expression g fpriority expres-

siong >

g

end

� section 4: place-to-transition arcs and multiplicity

f <place name transition name expression> g

end

� section 5: transition-to-place arcs and multiplicity

f <transition name place name expression> g

end

� section 6: inhibitor arcs and multiplicity

f <place name transition name expression> g

end

where, param list is:

name, name, ..., name

name, trans name and place name are all symbols; expression is a mathematical expres-

sion that could contain function calls; ind means that the transition’s firing rate is not

dependent on the current marking of the net; placedep means that the transition’s firing

rate depends on the number of tokens in the specific place mentioned and the �expression

assigned to it; and gendep means that the firing rate depends on the marking-dependent

function referenced in the corresponding expression.
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2.3.2 New built-in functions

Marking-dependent and rate-dependent functions

The following functions are used only within reward functions, guard functions, rate func-

tions, and arc cardinality functions for SRN models.

� #(place name)

Returns the number of tokens in a place with the given place name.

� ?(trans name)

Returns the boolean (true or false) value depending on whether the given transition

trans name is enabled.

� Rate(trans name)

Returns the rate of the given transition trans name; if disabled, return 0.

System analysis functions

In addition to the system analysis functions used for GSPN, three new system analysis

functions have been introduced to deal with the power of SRN models.

� srn exrss (sys name ; reward func namef; arglistg)

Calculates the steady-state expected value of the reward function reward func name.

� srn exrt (t, sys name; reward func namef;arglistg)

Calculates the expected value of the reward function reward func name at time t.
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� srn cexrt (t, sys name; reward func namef; arglistg)

Calculates the cumulative expected value of the reward function reward func name

over the interval (0; t].

� srn ave cexrt (t, sys name; reward func namef; arglistg)

Calculates the average cumulative expected value of the reward function reward func name

over the interval (0; t].

� mtta (sys name f; arglistg)

Calculates the mean time to absorption for the SRN named sys name. The function

should be used only when the underlying CTMC has absorbing states. (See example

C.4.1)

� srn cexrinf (sys name; reward func namef; arglistg)

Calculates the cumulative expected value of the reward function reward func name

until absorption for the corresponding CTMC of the SRN system sys name. The

CTMC must have absorbing states. (See example C.4.1)

where, arglist is

expression, expression, ..., expression

Mathematical functions

All the following functions can be used within expressions, for all models including the

SRN model.

� acos (expression)
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Calculates the arccosine.

� asin (expression)

Calculates the arcsine.

� atan (expression)

Calculates the arctangent.

� ceil (expression)

Calculates the ceiling of a value.

� cos (expression)

Calculates the cosine.

� fabs (expression)

Calculates the absolute value.

� floor (expression)

Calculates the floor of a value.

� ln (expression)

Calculates natural logarithm.

� max (expression, expression)

Compares two values and returns the larger one.

� min (expression, expression)

Compares two values and returns the smaller one.

� sin (expression)

Calculates sine.
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� sqrt (expression)

Finds square root.

� tan (expression)

Calculates the tangent.

� weibull (expression1, expression2, expression3)

Calculates the Weibull distribution function 1� e�
expression1

expression3

expression2

2.3.3 Syntax extensions

User defined function

Now, SHARPE supports either the old way of defining a function:

func (param list) expression

or the new way:

func (param list)

<statement>

end

If-statement has been added:

if bool expression

<statement>

f < elseif bool expression

<statement> >g
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felse

<statement>g

end

where statement can be

expression j bind var name expression j epsilon epsilon type expression j if statement

Detailed examples are provided in section 2.4.

Fixed point iteration

Suppose we have one SRN model M1. The firing rate R1 of a transition T1 is the same as

the throughput of another transition T2 [5]. Since we don’t know the firing rate of T1, fixed

point iteration has to be used:

1. Set error bound e as a small real number, normally 1e� 7 in SHARPE.

2. Initialize the firing rate R0
1 of T1 to a reasonable value.

3. Set k = 1

4. Execute M1, compute the throughput T2throughput of T2.

5. Set Rk

1 = T2throughput.

6. If jRk

1 �Rk�1
1 j=Rk�1

1 < e, then stop, else set k = k + 1 and goto step 4.

Under a very general condition, the solution always exists, but the uniqueness of the

solution is not guaranteed [2]. However, in many of practical problems, result is often

unique, so the justification is enough for the practical use of fixed point iterations.

24



To support fixed point iteration, while-statement has been introduced:

while bool expression

<statement>

end

where statement can be

expr expressionf,expression : : :g j bind var name expression j epsilon epsilon type

expression j if statement j loop j while statement

There is an example of fix-point iteration in section 2.4.9. Also, an example of while-

statement has been included in section 2.4.10.

2.4 SRN Examples

2.4.1 Two workstations, one file server system

Description

A system contains 2 workstations and 1 file server (Figure 2.8) . Suppose the network is

fault-free, and the whole system is working as long as there is one workstation and the

file server is operational. So, the initial number of tokens in the place wsup is 2 and in

the place fsup is 1. The file server has higher repair priority than the two workstations(see

the inhibitor arc from the place fsdn to the transition wsrp in Figure 2.8 ). Also, when the

whole system is down, currently operational workstations or file server don’t go down any

more(see the inhibitor arcs from fsdn and wsdn to the transitions wsfl and fsrp in Figure

2.8). We also have the assumption that, when a workstation fails, with probability c, the

failure is not detected, leading to the corruption and the failure of the file-server. That’s
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why we have immediate transitions wscv and wsuc.

Figure 2.8: Two workstation, one file server system with non-perfect failure detect

Features

� Reward function to compute expected values.

� Transient analysis

SHARPE File — srn=wfs.txt

format 8

func avail()

if ((#(wsup) > 0) and (#(fsup) == 1))

1
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else

0

end

end

srn wfs (c)

� Places

wsup 2

fsup 1

wst 0

wsdn 0

fsdn 0

end

� Timed transitions

wsfl placedep wsup 0.0001

fsfl ind 0.00005

wsrp ind 1.0

fsrp ind 0.5

end

� Immediate transitions

wscv ind c

wsuc ind 1 �c

end

� Input arcs

wsup wsfl 1

fsup fsfl 1

fsup wsuc 1

wst wscv 1

wst wsuc 1

wsdn wsrp 1

fsdn fsrp 1
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end

� Output arcs

wsfl wst 1

wsrp wsup 1

fsfl fsdn 1

fsrp fsup 1

wscv wsdn 1

wsuc wsdn 1

wsuc fsdn 1

end

� Inhibitor arcs

fsdn wsfl 1

fsdn wsrp 1

wsdn fsfl 2

end

� Obtain results

loop c, 0.7, 0.9, 0.1

loop t, 1, 10, 1

expr srn exrt(t, wfs; avail; c)

end

expr srn exrt(20, wfs; avail;c)

end

end
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Figure 2.9: Graph result for example 2.4.1

The result is shown graphically in Figure 2.9

2.4.2 Molloy’s example

Source

M. K. Molloy, Performance Analysis Using Stochastic Petri Nets, IEEE Trans. Comput.,

C-31 (9), Sept. 1982, 913–917.

Description

The net is shown in Figure 2.10
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Figure 2.10: SRN for Example 2.4.2

Features

� Reward based functions to compute expected values.

� Default measures

� Steady-state analysis

SHARPE File — srn=ex1.txt

echo M. K. Molloy, Performance Analysis Using Stochastic Petri Nets,

echo IEEE Trans. Comput., C�31(9), Sept. 1982, 931�917

format 8

srn example1()

p0 1

p1 0
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p2 0

p3 0

p4 0

end

t0 ind 1.0

t1 ind 3.0

t2 ind 7.0

t3 ind 9.0

t4 ind 5.0

end

end

p0 t0 1

p1 t1 1

p2 t2 1

p3 t3 1

p3 t4 1

p4 t4 1

end

t0 p1 1

t0 p2 1

t1 p3 1

t2 p4 1

t3 p1 1

t4 p0 1

end

end

� REWARD functions

func ef0() #(p0)

func ef1() #(p1)
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func ef2() Rate(t2)

func ef3() Rate(t3)

func eff() Rate(t1)�1.8+#(p3)�0.7

� Obtain results

expr srn exrss(example1; ef0), srn exrss(example1; ef1), srn exrss(example1; ef2), srn exrss(example1; ef3),

srn exrss(example1; eff)

end

2.4.3 Software Performance Analysis

Description

This example models the following piece of software:

A: Statements;

PARBEGIN

B1: statements;

B2: IF (cond1) THEN

C: statements;

ELSE

DO

D: statements;

WHILE (cond2);

END IF

PAREND

The corresponding SRN model is shown in Figure 2.11.

32



p8

t8

DC

B1

p2

p6 t6

p7

t7

t3
t2

p5
p4

p3

p1

A

1
p0

Figure 2.11: SRN for Example 2.4.3

Features

� Probability and rate functions.

� Priorities for immediate transitions.

� Reward functions.

� Transient analysis with multiple time points.

SHARPE File — srn=ex2.txt

echo Software Performance Analysis

echo A: Statements;

echo PARBEGIN

echo B1: statements;

echo B2: IF (cond1) THEN

echo C: statements;
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echo ELSE

echo DO

echo D: statements;

echo WHILE (cond2);

echo END IF

echo PAREND

format 8

bind

rate0 1.0

rate1 0.3

prob2 0.4

prob3 0.6

rate4 0.2

rate5 7.0

prob6 0.05

prob7 0.95

prob8 1.0

end

srn ex2()

� Places

P0 1

P1 0

P2 0

P3 0

P4 0

P5 0

P6 0

P7 0

P8 0
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end

� Timed transitions

A ind rate0

B1 ind rate1

C ind rate4

D ind rate5

end

� Immediate transitions

t2 ind prob2

t3 ind prob3

t6 ind prob6

t7 ind prob7

t8 ind prob8

end

� Input arcs

P0 A 1

P1 B1 1

P3 t2 1

P3 t3 1

P4 C 1

P5 D 1

P7 t6 1

P7 t7 1

P2 t8 1

P6 t8 1

end

� Output arcs

A P1 1

B1 P2 1

t2 P4 1

t3 P5 1

C P6 1
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D P7 1

t6 P6 1

t7 P5 1

A P3 1

t8 P8 1

end

� Inhibitor arcs

end

func rfunc() #(P8)

echo probability of completion

loop i, 1, 10

srn exrt(i, ex2; rfunc)

end

loop i, 10, 20, 2

srn exrt(i, ex2; rfunc)

end

loop i, 20, 50, 5

srn exrt(i, ex2; rfunc)

end

end

2.4.4 M=M=m=b queue

Description

This example models a finite-buffer M=M=m=b queue shown in Figure 2.12. The corre-

sponding SRN is shown in Figure 2.13.
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Figure 2.12: The M=M=m=b Queue.

��

trserv

b

trin

buf

Transition Rate Function
trserv #(buf)� if (#(buf) < m)

m� otherwise

Figure 2.13: SRN for Example 2.4.4

Features

� Both steady-state and transient analysis.

� Marking dependent firing rates.

� Reward functions.

SHARPE File — srn=ex3.txt

echo M/M/m/b queue model

format 8

bind

lambda 0.90

mu 0.10

�number of buffers

37



b 2

�number of servers

m 2

end

� RATE function

func rate serv()

if (#(buf) < m)

#(buf)�mu

else

m�mu

end

end

srn example3()

� Places

buf 0

end

� Timed transitions

trin ind lambda

trserv gendep rate serv()

end

� Immediate transitions

end

� Input arcs

buf trserv 1

end

� Output arcs

trin buf 1

end

� Inhibitor arcs

buf trin b
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end

� REWARD functions

func qlength1() #(buf)

func util1() ?(trserv)

func tput1() Rate(trserv)

func probrej()

if (#(buf) == b)

1

else

0

end

end

func probempty()

if (#(buf)==0)

1

else

0

end

end

func probhalffull()

if (#(buf) == b/2)

1

else

0

end

end
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� Obtain results

expr srn exrss(example3; qlength1), srn exrss(example3; tput1), srn exrss(example3; util1), srn exrss(example3;

probrej), srn exrss(example3; probempty), srn exrss(example3; probhalffull)

loop t, 0.1, 1.0, 0.1

expr srn exrt(t, example3; qlength1), srn exrt(t, example3; tput1), srn exrt(t, example3; util1), srn exrt(t, ex-

ample3; probrej), srn exrt(t, example3; probempty), srn exrt(t, example3; probhalffull)

end

loop t, 1.0, 10.0, 1.0

expr srn exrt(t, example3; qlength1), srn exrt(t, example3; tput1), srn exrt(t, example3; util1), srn exrt(t, ex-

ample3; probrej), srn exrt(t, example3; probempty), srn exrt(t, example3; probhalffull)

end

end

2.4.5 C.mmp system performability analysis

Source

J. T. Blake, A. L. Reibman and K. S. Trivedi, Sensitivity Analysis of Reliability and Per-

formability Measures for Multiprocessor Systems, Proc. 1988 ACM SIGMETRICS, Santa

Fe, NM, 1988.

Description

This example models the C.mmp system designed at CMU. The architecture of the system

is shown in Figure 2.14. The corresponding SRN model is shown in Figure 2.15.
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m16
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m1

p16

p2

p1

NETWORK

CONNECTION

INTER

Figure 2.14: The C.mmp Architecture.

Features

� Guard functions.

� Variable multiplicity arcs.

� Reward based measures.

� Transient analysis.

SHARPE File — srn=ex4.txt

echo C.mmp system performability analysis

echo J.T. Blake, A.L. Reibman and K.S. Trivedi,

echo Sensitivity Analysis of Reliability and Performability

echo Measures for Multiprocessor Systems,

echo Proc. 1988 ACM SIGMETRICS, Santa Fe, NM, 1988

format 8

� Munimum number of proc/mem needed 1�k�16

bind k 2
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##
trr

trswtrmmtrpr

swdn
memdnprocdn

swupmemup
procup

116
16

Transition Guard Function
trflr ((#(procup) < k) _ (#(memup) < k) _ (#(swup) = 0))

^((#(procup) > 0) _ (#(memup) > 0) _ (#(swup) > 0))

Arcs Multiplicity Function
procup! trflr & #(procup)

trflr ! procdn
memup! trflr & #(memup)

trflr ! memdn
swup ! trflr & #(swup)

trflr ! swdn

Figure 2.15: SRN for Example 2.4.5.

� GUARD function

func entrflr()

if (#(procup) == 0 and #(memup) == 0 and #(swup) == 0)

0

elseif (#(procup) < k or #(memup) < k or #(swup) == 0)

1

else

0

end

end

� ARC CARDNALITY functions

func apfl() #(procup)
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func amfl() #(memup)

func asfl() #(swup)

srn example4()

� Places

procup 16

procdn 0

memup 16

memdn 0

swup 1

swdn 0

end

� Timed transitions

trpr placedep procup 0.0000689

trmm placedep memup 0.000224

trsw ind 0.0002202

end

� Immediate transitions

trflr ind 1.0 guard entrflr() priority 100

end

� Input transitions

procup trpr 1

memup trmm 1

swup trsw 1

procup trflr apfl()

memup trflr amfl()

swup trflr asfl()

end

� Output transitions

trpr procdn 1

trmm memdn 1
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trsw swdn 1

trflr procdn apfl()

trflr memdn amfl()

trflr swdn asfl()

end

� Inhibitor arcs

end

� REWARD functions

func reliab()

if (#(procup)� k and #(memup)� k and #(swup) == 1)

1

else

0

end

end

func reward rate()

if (#(procup)� k and #(memup)� k and #(swup) == 1)

if (#(procup) > #(memup))

bind l #(memup)

bind m #(procup)

else

bind m #(memup)

bind l #(procup)

end

bind temp (1.0�(1.0/m))ˆl

m�(1.0� temp)

else

0

end

end
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� Obtain results

loop t, 500.0, 5000.0, 500.0

expr srn exrt(t, example4; reliab), srn exrt(t, example4; reward rate), srn cexrt(t, example4; reward rate)

end

end

Result (Figure 2.16)

Figure 2.16: Graph result for example 2.4.5
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2.4.6 Database system availability analysis

Source

P. Hiedelberger and A. Goyal, Sensitivity Analysis of Continuous Time Markov chains

using Uniformization, Computer Performance and Reliability, G. Iazeolla, P. J. Courtois

and O. J. Boxma (Eds.), Elsevier Science Publishers, B.V. (North-Holland), Amsterdam,

1988.

Description

This example is a model of a database system shown in Figure 2.17.

M

P

P

S

FE

DB

M S

P

P

Figure 2.17: The Database System Architecture.

The system consists of a front end (FE), a database (DB) and two processing sub-

systems. Each processing sub-system consists of two processors (P), a memory (M) and

a switch (S). For the system to be functional, we need at least one of the processing sub-

systems to be operational. The database and the front-end should also be operational. The
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tmm2r

tsw2

tsw2r

tsw1r
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tpr2f2
tpr2f1

tpr1f2

tpr1f1

tpr2r

tpr1r

2

1 1 1

1
1

1

2

pr2dn2pr2dn1

pr1dn2pr1dn1

pr2tmp

tpr2

pr2up

tsw1

tmm1r

tmm1

sw2dn

sw2up

mm2dn

mm2up

sw1dnmm1dn

sw1upmm1up

pr1tmp

tpr1

pr1up

tfe

tdb

feup

dbdn

dbup

Transition Guard Function
all (#(dbup) = 1) ^ (#(feup) = 1)

^((#(pr1up) > 0) ^ (#(mm1up) > 0) ^ (#(sw1up) > 0)

_(#(pr2up) > 0) ^ (#(mm2up) > 0) ^ (#(sw2up) > 0))

Figure 2.18: SRN for Example 2.4.6.

processing sub-system is functional as long as the memory, the switch and at least one

of the processors is functional. When a processor fails, with probability c it fails without

disturbing the system. However, with probability 1 � c the failing processor corrupts the

database causing it to fail and consequently rendering the system un-operational. The

processors, memories and switches can be repaired while the system is up. The memories

and switches receive priority over the processors for repair. The corresponding SRN model

is shown in Figure 2.18.

47



Features

� Guard function.

� Reward based functions.

� Transient analysis.

SHARPE File — srn=ex5.txt

echo Database system availability analysis

echo P. Hiedelberger and A. Goyal,

echo Sensitivity Analysis of Continuous Time Markov chains using Uniformization,

echo Computer Performance and Reliability, G. Iazeolla, P. J. Courtois and

echo O. J. Boxma (Eds.), Elsevier Science Publishers, B.V. (North�Holland),

echo Amsterdam, 1988

format 8

epsilon basic 1.0e�10

bind coverage 0.99

bind count 0

� GUARD functions

func enall()

if (#(dbup)==0)

0

elseif (#(feup)==0)

0

elseif (((#(mm1up)==0) or (#(sw1up)==0) or (#(pr1up)==0)) and ((#(mm2up)==0) or (#(sw2up)==0) or (#(pr2up)==0)))

0

else
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1

end

end

srn example5()

� Places

� First processing subsystem

mm1up 1

sw1up 1

pr1up 2

mm1dn 0

sw1dn 0

pr1tmp 0

pr1dn1 0

pr1dn2 0

� Second processing subsystem

mm2up 1

sw2up 1

pr2up 2

mm2dn 0

sw2dn 0

pr2tmp 0

pr2dn1 0

pr2dn2 0

� Database

dbup 1

dbdn 0

� Frontend

feup 1

fedn 0

end

� Timed transitions
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tmm1fl ind 1000./2400. guard enall()

tsw1fl ind 1000./2400. guard enall()

tpr1fl placedep pr1up 1000./2400. guard enall()

tmm1r ind 1000. guard enall()

tsw1r ind 1000. guard enall()

tpr1r ind 1000. guard enall()

tmm2fl ind 1000./2400. guard enall()

tsw2fl ind 1000./2400. guard enall()

tpr2fl placedep pr2up 1000./2400. guard enall()

tmm2r ind 1000. guard enall()

tsw2r ind 1000. guard enall()

tpr2r ind 1000. guard enall()

tdbfl ind 1000./2400. guard enall()

tfefl ind 1000./2400. guard enall()

end

� Immediate transitions

tpr1f1 ind coverage priority 100

tpr1f2 ind 1.0�coverage priority 100

tpr2f1 ind coverage priority 100

tpr2f2 ind 1.0�coverage priority 100

end

� Input arcs

mm1up tmm1fl 1

sw1up tsw1fl 1

pr1up tpr1fl 1

pr1tmp tpr1f1 1

pr1tmp tpr1f2 1

dbup tpr1f2 1

mm1dn tmm1r 1

sw1dn tsw1r 1

pr1dn1 tpr1r 1

mm2up tmm2fl 1
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sw2up tsw2fl 1

pr2up tpr2fl 1

pr2tmp tpr2f1 1

pr2tmp tpr2f2 1

dbup tpr2f2 1

mm2dn tmm2r 1

sw2dn tsw2r 1

pr2dn1 tpr2r 1

dbup tdbfl 1

feup tfefl 1

end

� Output arcs

tmm1fl mm1dn 1

tsw1fl sw1dn 1

tpr1fl pr1tmp 1

tpr1f1 pr1dn1 1

tpr1f2 pr1dn2 1

tpr1f2 dbdn 1

tmm1r mm1up 1

tsw1r sw1up 1

tpr1r pr1up 1

tmm2fl mm2dn 1

tsw2fl sw2dn 1

tpr2fl pr2tmp 1

tpr2f1 pr2dn1 1

tpr2f2 pr2dn2 1

tpr2f2 dbdn 1

tmm2r mm2up 1

tsw2r sw2up 1

tpr2r pr2up 1

tdbfl dbdn 1

tfefl fedn 1
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end

� Inhibitor arcs

mm1dn tpr1r 1

mm2dn tpr1r 1

sw1dn tpr1r 1

sw2dn tpr1r 1

mm1dn tpr2r 1

mm2dn tpr2r 1

sw1dn tpr2r 1

sw2dn tpr2r 1

end

� REWARD function

func reliab()

if (#(dbup)==0)

0.0

elseif (#(feup)==0)

0.0

elseif (((#(mm1up)==0) or (#(sw1up)==0) or (#(pr1up)==0)) and ((#(mm2up)==0) or (#(sw2up)==0) or (#(pr2up)==0)))

0.0

else

1.0

end

end

� Obtain results

loop t, 0.01, 0.1, 0.01

expr srn exrt(t, example5; reliab)

end

�echo error cumulated

loop t, 0.1, 1, 0.1

expr srn exrt(t, example5; reliab)
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end

end

2.4.7 ATM network under overload

Source

Chang-Yu Wang, D. Logothetis, K.S. Trivedi and I. Viniotis, Transient Behavior of ATM

Networks under Overloads, Proceedings of the IEEE INFOCOM 96, San Francisco, CA,

pp. 978-985, March 1996.

Description

This example models ATM (Asynchronous Transfer Mode) networks under overloads. The

SRN is shown in Figure 2.19.

Features

� Transient analysis.

� Marking dependent firing rates.

� Guard functions.

� Reward functions.

SHARPE File — srn=ex6.txt

echo ATM network under overload

echo Chang�Yu Wang, D. Logothetis, K.S. Trivedi and I. Viniotis,
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t1_1

t2_1

mmpp_1

tar1 buf1

t2_2

t1_2

mmpp_2

tar2 buf2

rerouting time

service time

Transition Rate Function Guard Function
tar1 if (#mmpp1) �11 else �12 (#buf1 +

P
i
#Preroute[i]) < K1

tar2 if (#mmpp2) �21 else �22 (#buf2 +
P

i
#Pserv [i]) < K2

Figure 2.19: SRN for Example 2.4.7

echo Transient Behavior of ATM Networks under Overloads,

echo Proceedings of the IEEE INFOCOM 96, San Francisco, CA,

echo pp. 978�985, March 1996.

format 8

bind

a1 0.0269163

a2 0.0269163

b1 0.00672908

b2 0.00672908

lambda11 1.5058

lambda21 1.5058

lambda12 0.00301161

lambda22 0.00301161

r1 5
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r2 5

mu1 2.73

mu2 2.73

K1 16

K2 16

e 0.0001

end

�REWARD Functions

func Qlen1() #(buf1)+(#(Er token1)+#(Er stage1))/r1

func Earrival()

if (#(mmpp 2)<> 0)

bind ret val lambda21

else

bind ret val lambda22

end

if (#(Er token1)==1)

bind ret val ret val+r1/mu1

end

ret val

end

func Qlen2() #(buf2)+(#(Er token2)+#(Er stage2))/r1

func ELR()

if ((Qlen2()+e)�K2)

if (#(mmpp 2)<>0)

bind ret val lambda21

else

bind ret val lambda22

end
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if (#(Er token1)==1)

bind ret val ret val+r1/mu1

end

ret val

else

0

end

end

func PFull()

if (Qlen2()+e)�K2

1.0

else

0

end

end

� GUARD Functions

func gar2()

if (Qlen2()+e)<K2

1

else

0

end

end

func gar1()

if ((Qlen1()+e)<K1)

1

else

0

end
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end

� RATE Functions

func REr1() r1/mu1

func Rar1()

if (#(mmpp 1)>0)

lambda11

else

lambda12

end

end

func REr2() r2/mu2

func Rar2()

if (#(mmpp 2)>0)

lambda21

else

lambda22

end

end

� CARDINALITY Functions

func R2() r2

func dep12()

if ((K2�Qlen2()+e)<1)

0

else

1

end

end
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func R1() r1

srn example6()

� Places

mmpp 1 1

mmpp 2 1

buf1 0

Er token1 0

Er stage1 0

buf2 0

Er token2 0

Er stage2 0

end

� Timed Transitions

t2 1 ind b1

t2 2 ind b2

t1 1 ind a1

t1 2 ind a2

tar1 gendep Rar1() guard gar1()

Er trans1 ind REr1()

tar2 gendep Rar2() guard gar2()

Er trans2 ind REr2()

end

� Immediate Transitions

Er in1 ind 1. priority 20

Er out1 ind 1. priority 20

Er in2 ind 1. priority 20

Er out2 ind 1. priority 20

end

� Input arcs

mmpp 1 t1 1 1
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mmpp 2 t1 2 1

buf1 Er in1 1

Er token1 Er trans1 1

Er stage1 Er out1 R1()

buf2 Er in2 1

Er token2 Er trans2 1

Er stage2 Er out2 R2()

end

� Output arcs

t2 1 mmpp 1 1

t2 2 mmpp 2 1

tar1 buf1 1

Er in1 Er token1 R1()

Er trans1 Er stage1 1

Er out1 buf2 dep12()

tar2 buf2 1

Er in2 Er token2 R2()

Er trans2 Er stage2 1

end

� Inhibitor arcs

mmpp 1 t2 1 1

mmpp 2 t2 2 1

Er token1 Er in1 1

Er stage1 Er in1 1

Er token2 Er in2 1

Er stage2 Er in2 1

end

� Obtain results

loop t, 10.0, 200.0, 10.0

expr srn exrt(t, example6; Qlen1)

expr srn exrt(t, example6; Qlen2)
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expr srn exrt(t, example6; ELR)

expr srn exrt(t, example6; PFull)

expr srn exrt(t, example6; Earrival)

end

end

Result (Figure 2.20)
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Figure 2.20: Partial graph result for example 2.4.7

2.4.8 Criticality Importance and Birnbaum Importance

Source

R. M. Fricks and K. S. Trivedi, On Computing Importance Measures Using Reward Mod-

els, VII Simposio de Computadores Tolerantes a Falhas (VII SCTF), pp. 169 – 183, Camp-

ina Grande, Brazil, Jul. 1997.
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Description

A novel technique for computing importance measures in state space dependability models

is introduced here. Specifically, reward functions in a Markov reward model are utilized

for this purpose, in contrast to the common method of computing importance measures

through combinatorial models and structure functions. The following simple example is

used to show how to calculate Criticality Importance and Birnbaum Importance.

Features

� Reward based measures.

SHARPE File — srn=ex7.txt

echo Criticality Importance and Birnbaum Importance

echo R.M. Fricks and K. S. Trivedi,

echo On Computing Importance Measures Using Reward Models,

echo VII Simposio de Computadores Tolerantes a Falhas (VII SCTF),

echo pp. 169�183, Campina Grande, Brazil, Jul. 1997.

format 8

� REWARD RATE FUNCTIONS

� Criticality

func Q1()

if (#(p1) == 1)

1

else

0
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end

end

func Q2()

if (#(p2) == 1)

1

else

0

end

end

func Q3()

if (#(p3) == 1)

1

else

0

end

end

func Q()

if (Q1() + Q2() + Q3() �2)

1

else

0

end

end

� Birnbaum

func g11()

if (1.0+Q2() + Q3()� 2)

1

else

62



0

end

end

func g10()

if (Q2() + Q3() � 2)

1

else

0

end

end

func g21()

if (Q1() +1.0 + Q3() � 2)

1

else

0

end

end

func g20()

if (Q1() + Q3() � 2)

1

else

0

end

end

func g31()

if (Q1()+Q2() + 1.0� 2)

1

else
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0

end

end

func g30()

if (Q1()+Q2() � 2)

1

else

0

end

end

srn example7()

� Places

p1 0

p2 0

p3 0

end

� Timed transitions

t1 ind 0.001

t2 ind 0.002

t3 ind 0.003

end

� Immediate transitions

end

� Input arcs

end

� Output arcs

t1 p1 1

t2 p2 1

t3 p3 1

end
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� Inhibitor arcs

p1 t1 1

p2 t2 1

p3 t3 1

end

� Obtain results

bind

t 20.

b1 srn exrt(t, example7; g11)� srn exrt(t, example7; g10)

b2 srn exrt(t, example7; g21)� srn exrt(t, example7; g20)

b3 srn exrt(t, example7; g31)� srn exrt(t, example7; g30)

q srn exrt(t, example7; Q)

end

expr b1, b2, b3, b1�srn exrt(t, example7; Q1)/q, b2�srn exrt(t, example7; Q2)/q, b3�srn exrt(t, example7; Q3)/q

end

2.4.9 Channel recovery scheme in a cellular network

Source

Y. Ma, C. W. Ro and K. S. Trivedi, Performability Analysis of Channel Allocation with

Channel Recovery Strategy in Cellular Network, Proceedings of IEEE 1998 International

Conference on Universal Personal Communications (ICUPC’98), Florence, Italy, 5-9 Oc-

tober, 1998.
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Description

The net is shown in Figure 2.21

#
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#

#
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Figure 2.21: SRN for a channel recovery scheme in a cellular network.

Features

� Fixed point iteration. The handoff arrival rate (�i
h
) of transition ti

h
equals to the

throughput of transition to
h
, which is used to represent the departure of handoff calls.

� Reward based functions to compute expected values.

� Default measures

� Transient analysis

SHARPE File — srn=ex8.txt

echo Y. Ma, C. W. Ro and K. S. Trivedi, Performability Analysis of Channel

echo Allocation with Channel Recovery Strategy in Cellular Network,

echo Proceedings of IEEE 1998 International Conference on Universal Personal
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echo Communications (ICUPC 1998), Florene, Italy, 5�9 October, 1998.

format 8

bind

MAX ITERATIONS 6

MAX ERROR 1e�7

t channel 28

g c 1

� New call arrival rate

lam n 10

� handoff every 5 minutes

lam h o 0.33

� Handoff in rate

lam h i 0.2

� call duration: 120 seconds

lam d 0.5

lam f 0.000016677

mu r 0.0167

end

srn icupc98 ()

� Places

T 0

B 0

R 0

CP t channel

end

� Timed transitions

t n ind lam n

t h i ind lam h i

t d placedep T lam d
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t f placedep T lam f

t h o placedep T lam h o

t r ind mu r

end

� Immediate transitions

t 1 ind 1.0 priority 100

end

� Input arcs

CP t n g c + 1

CP t h i 1

T t h o 1

T t d 1

T t f 1

R t r 1

B t 1 1

CP t 1 1

end

� Output arcs

t n T 1

t n CP g c

t h i T 1

t h o CP 1

t d CP 1

t f B 1

t f R 1

t r CP 1

t 1 T 1

end

� Inhibitor arcs

end

� REWARD rate functions
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func BH()

if (#(CP) == 0)

1.0

else

0.0

end

end

func BN()

if (#(CP) � g c)

1.0

else

0.0

end

end

func ACh() #(CP)

func hotput() Rate(t h o)

func ftput2() Rate(t f)

func fnum() #(B)

bind i 0

bind err 1

while (i < MAX ITERATIONS and err > MAX ERROR)

bind tp srn exrss(icupc98; hotput)

bind err fabs((lam h i � tp)/tp)

bind i i + 1

if (i < MAX ITERATIONS)
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bind lam h i tp

end

end

expr srn exrss(icupc98; BH)

expr srn exrss(icupc98; BN)

expr srn exrss(icupc98; ACh)

expr srn exrss(icupc98; fnum)/srn exrss(icupc98; ftput2)

end

Result File — srn=ex8.txt.out

� Y. Ma, C. W. Ro and K. S. Trivedi, Performability Analysis of Channel

� Allocation with Channel Recovery Strategy in Cellular Network,

� Proceedings of IEEE 1998 International Conference on Universal Personal

� Communications (ICUPC 1998), Florene, Italy, 5�9 October, 1998.

tp <� 4.054972

err <� 0.950678

i <� 1.000000

lam h i <� 4.054972

tp <� 5.557387

err <� 0.270346

i <� 2.000000

lam h i <� 5.557387

tp <� 6.098202

err <� 0.088684

i <� 3.000000

lam h i <� 6.098202

tp <� 6.280690

err <� 0.029055

i <� 4.000000

70



lam h i <� 6.280690

tp <� 6.340547

err <� 0.009440

i <� 5.000000

lam h i <� 6.340547

tp <� 6.359983

err <� 0.003056

i <� 6.000000

�������������������������������������������

srn exrss(icupc98; BH): 6.50059657e�003

�������������������������������������������

srn exrss(icupc98; BN): 3.03008702e�002

�������������������������������������������

srn exrss(icupc98; ACh): 8.70770327e+000

�������������������������������������������

srn exrss(icupc98; fnum)/srn exrss(icupc98; ftput2): 4.21143605e�004

2.4.10 Testing while statement

Description

This example is used to test the syntax of while-statement.
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SHARPE File — srn=syntaxtest

bind i1 1

bind a 2

while i1 � 3

loop j1, 1, 3, 1

bind k1 1

while k1 � 3

expr i1, j1, k1

bind k1 k1+1

end

end

bind i1 i1+1

if a > 1

loop l1, 1, 3, 1

expr l1

end

end

end

loop i2, 1, 3, 1

bind j2 1

while j2 � 3

expr i2, j2

bind j2 j2+1

end

end

expr min(1, 2), max(1, 2)

echo ERROR: while cannot be used in func definition
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func test ()

while a > 1

end

end

end

73



Chapter 3

Model Types Integrated

3.1 Phased-Mission Systems(PMS)

The PMS model is implemented by Xinyu Zang [18], which has the following features:

� An efficient BDD-based algorithm is used for analysis, where BDD stands for binary

decision diagrams [8, 1].

� The system configuration in each phase is specified by a fault tree.

� Transient analysis is provided.

3.1.1 Specification of model

The paradigm of fault tree models is used to specify the system configuration in each phase.

A PMS is specified as follows:

pms name f ( param list ) g

<phase number phase name duration>

end

The phase number specifies which phase the system configuration is in. The phase name

should be the same as the system name in the fault tree in which the system configuration

is specified. The duration specifies the duration of this phase.
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3.1.2 System analysis function

The only system analysis function that can be used from PMS model is

tvalue(t, system name)

that gives the unreliability of the PMS at time t. Note that there may be latent faults at the

transition of phases. Two switch commands are used to set which time the tvalue uses:

� ltimep: set time as t�, i.e. at the end of the phase i� 1.

� rtimep: set time as t+, i.e. at the beginning of the phase i.

There are two examples included in the next section.

3.1.3 Examples

A three-phase system

Figure 3.1: System configuration in three phases

Description The system has three phases X , Y and Z whose configurations are shown

in Figure 3.1 in fault tree format. The equivalent system for the end of mission XY Z is
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Figure 3.2: Equivalent system for the end of mission

shown in Figure 3.2. We also consider the other five possible phase configurations, i.e.,

XZY , Y XZ, Y ZX , ZXY , ZYX .

SHARPE File — pms=yy.timep

format 8

epsilon results 0.000000000001

ftree X

basic a exp(a x)

basic b exp(b x)

basic c exp(c x)

or top a b c

end

ftree Y

basic a exp(a y)
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basic b exp(b y)

basic c exp(c y)

and BC b c

or top BC a

end

ftree Z

basic a exp(a z)

basic b exp(b z)

basic c exp(c z)

and ABC a b c

end

bind

a x 0.0001

a y 0.0001

a z 0.0001

b x 0.0001

b y 0.0001

b z 0.0001

c x 0.0001

c y 0.0001

c z 0.0001

T x 10

T y 10

T z 10

end

pms XYZ

1 X T x

2 Y T y

3 Z T z
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end

pms XZY

1 X T x

2 Z T z

3 Y T y

end

pms YXZ

1 Y T y

2 X T x

3 Z T z

end

pms YZX

1 Y T y

2 Z T z

3 X T x

end

pms ZXY

1 Z T z

2 X T x

3 Y T y

end

pms ZYX

1 Z T z

2 Y T y

3 X T x

end

ltimep
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loop t, 0, 30, 10

expr tvalue(t; XYZ), tvalue(t; XZY)

expr tvalue(t; YXZ), tvalue(t; YZX)

expr tvalue(t; ZXY), tvalue(t; ZYX)

end

rtimep

loop t, 0, 30, 10

expr tvalue(t; XYZ), tvalue(t; XZY)

expr tvalue(t; YXZ), tvalue(t; YZX)

expr tvalue(t; ZXY), tvalue(t; ZYX)

end

end

Space application

Description Modifying the space application in [11], we get an example whose mission

alternates between operational phases Launch, Asteroid, Comet, with Hibernation phases

as shown in Figure 3.3.

SHARPE File — pms=space
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Figure 3.3: System configuration for space application
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format 8

� Phase 1

ftree Launch

repeat La exp(RL)

repeat Lb exp(RL)

repeat Ha exp(RHo)

repeat Hb exp(RHo)

repeat Hc exp(RHo)

repeat Hd exp(RHo)

and L La Lb

kofn H 2,4, Ha Hb Hc Hd

or top L H

end

� Phase 2

ftree Hibernation1

repeat Ha exp(RHh)

repeat Hb exp(RHh)

and top Ha Hb

end

� Phase 3

ftree Asteriod

repeat Aa exp(RA)

repeat Ab exp(RA)

repeat Ha exp(RHo)

repeat Hb exp(RHo)

repeat Hc exp(RHo)

repeat Hd exp(RHo)

and A Aa Ab

kofn H 2,4, Ha Hb Hc Hd
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or top A H

end

� Phase 4

ftree Hibernation2

repeat Ha exp(RHh)

repeat Hb exp(RHh)

and top Ha Hb

end

� Phase 5

ftree Comet

repeat Ca exp(RC)

repeat Cb exp(RC)

repeat Ha exp(RHo)

repeat Hb exp(RHo)

repeat Hc exp(RHo)

repeat Hd exp(RHo)

and C Ca Cb

kofn H 2,4, Hd Hc Hb Ha

or top C H

end

bind

RL 0.00005

RA 0.00001

RC 0.0001

RHo 0.00001

RHh 0.000001

T1 48

T2 17520

T3 672
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T4 26952

T5 672

end

pms Space

1 Launch T1

2 Hibernation1 T2

3 Asteriod T3

4 Hibernation2 T4

5 Comet T5

end

loop t, T1+T2+T3+T4, T1+T2+T3+T4+T5, 112

expr tvalue(t; Space)

end

end

Result Unreliability of space application
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Figure 3.4: Unreliability of space application
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3.2 Multistate Fault Trees

The Multi-state Fault Tree (MFT) model [18] is added in SHARPE as a new model that

has the following features:

� An efficient BDD-based analysis algorithm is used for the MFT solution.

� The specification of MFT model is an extension of fault tree model.

� Most types of results for fault tree model are supported.

3.2.1 Specification of model

A multi-state fault tree is specified by the following:

mstree name f ( param list ) g

<mstreeline>

end

An mstreeline has one of the following forms:

1. basic name:state ep

This is a basic component type. It is assigned a name, a state and an exponential

polynomial. Whenever this name appears later in the multi-state tree specification,

it is interpreted as being the same state of the same physical component.

2. transfer name name

The second name must have been previously defined using basic. Whenever the first

name appears later in the multi-state tree specification, it is interpreted as being the

same physical component as the second name.
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3. and name namef:stateg namef:stateg f namef:stateg ... g

This represents an “and” gate. The gate is assigned the first name, and the rest of the

names form the inputs to the gate. There must be at least two inputs.

4. or name namef:stateg namef:stateg f namef:stateg ... g

This represents an “or” gate. The gate is assigned the first name, and the rest of the

names form the inputs to the gate. There must be at least two inputs.

5. kofn name expression, expression, namef:stateg

This represents a k-out-of-n gate having identical inputs. The gate is assigned the

first name. The first expression gives k and the second expression gives n. The

inputs to the gate are assumed to be n identically distributed, independent copies of

the second name.

6. kofn name expression, expression, namef:stateg namef:stateg f namef:stateg ... g

This represents a k-out-of-n gate whose inputs need not be identical. The gate is

assigned the first name. The first expression gives k and the second expression gives

n. The names following the second expression are the inputs to the gate; there must

be at least two.

In forms 2 through 6, the names making up the block must already be defined. The block

names that are top:state represent a state of top event in multi-state tree.

3.2.2 System analysis functions

Most types of results for fault tree model are supported, except for importance measure

and mincuts. A state of top event (top:state) needs to be specified at state eword in the

corresponding functions. For example, if the cdf is asked for a state of top event, 1, in a
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multi-state tree, mst, cdf(mst, top:1) can give the result. Detailed description of fault tree

models can be found in [14].

3.2.3 Examples

Two boards system

Figure 3.5: System diagram

Description Figure 3.5 shows a system with two boards B1 and B2, each having a

processor and a memory. The memories (M1 and M2) can be shared by both processors

(P1 and P2). The processor and memory on the same board can fail separately, but s-

dependently. We define system state as: state 1, no processor or no memory are functional;

state 2, at least one processor and exactly one memory are functional; state 3, at least one

processor and both of the memories are functional. Figure 3.6 shows the MFTs for all the

states of the system, where Bij represents the board Bi being in state j.

SHARPE File — ms=ex1

format 8

mstree ex1

basic B1:4 prob(0.95)
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Figure 3.6: MFTs of example 3.2.3

basic B1:3 prob(0.02)

basic B1:2 prob(0.02)

basic B1:1 prob(0.01)

basic B2:4 prob(0.95)

basic B2:3 prob(0.02)

basic B2:2 prob(0.02)

basic B2:1 prob(0.01)

or gor321 B2:3 B2:4

and gand311 B1:4 gor321

and gand312 B1:3 B2:4

or top:3 gand311 gand312

or gor221 B1:1 B1:2

or gor222 B2:1 B2:2

and gand211 B1:4 gor222

and gand212 B1:3 B2:2

and gand213 B1:2 B2:3

and gand214 gor221 B2:4

or top:2 gand211 gand212 gand213 gand214

or gor121 B2:3 B2:1

or gor122 B2:2 B2:1
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or gor123 B2:3 B2:2 B2:1

and gand111 B1:3 gor121

and gand112 B1:2 gor122

and gand113 B1:1 gor123

or top:1 gand111 gand112 gand113

end

expr sysprob(ex1, top:1)

expr sysprob(ex1, top:2)

expr sysprob(ex1, top:3)

end

A communication network

Figure 3.7: The network topology of example 3.2.3

Description Figure 3.7 shows a communication network topology. Each link can sup-

port c calls/connectionls simultaneously and the amount of bandwidth required by each

call/connnection is equal, which means the call/connections are homogeneous. Obviously,

the spare capacity of each link has multiple states: 0, 1, : : :, c. We assume the transitions

among the states form a birth-death process with parameter � and � represented as a Con-
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Figure 3.8: The CTMC for each link’s spare capacity in example 3.2.3

tinuous Time Markov Chain (CTMC) in Figure 3.8. If there is an application which needs

k simultaneous connections from A to D and all the k connections must follow the same

route, we can obtain the blocking probability by MFT. The MFT is shown at Figure 3.9,

and the blocking probability is 1 � PS(t). Let c for all links be 10, and we calculate the

blocking probability.

Figure 3.9: The MFT of example 3.2.3
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SHARPE File — ms=app

format 8

epsilon results 0.000000000001

bind

lambda 0.1

mu 0.1

t 20000

end

markov link readprobs

10 9 lambda

9 8 lambda

8 7 lambda

7 6 lambda

6 5 lambda

5 4 lambda

4 3 lambda

3 2 lambda

2 1 lambda

1 0 lambda

0 1 10 � mu

1 2 9 � mu

2 3 8 � mu

3 4 7 � mu

4 5 6 � mu

5 6 5 � mu

6 7 4 � mu

7 8 3 � mu

8 9 2 � mu

9 10 mu

end
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10 1.0

end

�debug mstree

mstree net(t)

basic link1:0 prob(value(t; link, 0))

basic link1:1 prob(value(t; link, 1))

basic link1:2 prob(value(t; link, 2))

basic link1:3 prob(value(t; link, 3))

basic link1:4 prob(value(t; link, 4))

basic link1:5 prob(value(t; link, 5))

basic link1:6 prob(value(t; link, 6))

basic link1:7 prob(value(t; link, 7))

basic link1:8 prob(value(t; link, 8))

basic link1:9 prob(value(t; link, 9))

basic link1:10 prob(value(t; link, 10))

basic link2:0 prob(value(t; link, 0))

basic link2:1 prob(value(t; link, 1))

basic link2:2 prob(value(t; link, 2))

basic link2:3 prob(value(t; link, 3))

basic link2:4 prob(value(t; link, 4))

basic link2:5 prob(value(t; link, 5))

basic link2:6 prob(value(t; link, 6))

basic link2:7 prob(value(t; link, 7))

basic link2:8 prob(value(t; link, 8))

basic link2:9 prob(value(t; link, 9))

basic link2:10 prob(value(t; link, 10))

basic link3:0 prob(value(t; link, 0))

basic link3:1 prob(value(t; link, 1))

basic link3:2 prob(value(t; link, 2))
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basic link3:3 prob(value(t; link, 3))

basic link3:4 prob(value(t; link, 4))

basic link3:5 prob(value(t; link, 5))

basic link3:6 prob(value(t; link, 6))

basic link3:7 prob(value(t; link, 7))

basic link3:8 prob(value(t; link, 8))

basic link3:9 prob(value(t; link, 9))

basic link3:10 prob(value(t; link, 10))

basic link4:0 prob(value(t; link, 0))

basic link4:1 prob(value(t; link, 1))

basic link4:2 prob(value(t; link, 2))

basic link4:3 prob(value(t; link, 3))

basic link4:4 prob(value(t; link, 4))

basic link4:5 prob(value(t; link, 5))

basic link4:6 prob(value(t; link, 6))

basic link4:7 prob(value(t; link, 7))

basic link4:8 prob(value(t; link, 8))

basic link4:9 prob(value(t; link, 9))

basic link4:10 prob(value(t; link, 10))

basic link5:0 prob(value(t; link, 0))

basic link5:1 prob(value(t; link, 1))

basic link5:2 prob(value(t; link, 2))

basic link5:3 prob(value(t; link, 3))

basic link5:4 prob(value(t; link, 4))

basic link5:5 prob(value(t; link, 5))

basic link5:6 prob(value(t; link, 6))

basic link5:7 prob(value(t; link, 7))

basic link5:8 prob(value(t; link, 8))

basic link5:9 prob(value(t; link, 9))

basic link5:10 prob(value(t; link, 10))

or slink1 link1:3 link1:4 link1:5 link1:6 link1:7 link1:8 link1:9 link1:10

or slink2 link2:3 link2:4 link2:5 link2:6 link2:7 link2:8 link2:9 link2:10
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or slink3 link3:3 link3:4 link3:5 link3:6 link3:7 link3:8 link3:9 link3:10

or slink4 link4:3 link4:4 link4:5 link4:6 link4:7 link4:8 link4:9 link4:10

or slink5 link5:3 link5:4 link5:5 link5:6 link5:7 link5:8 link5:9 link5:10

and and4l slink5 slink3

and and4r slink2 slink3

or or3l slink2 and4l

or or3r slink5 and4r

and and2l slink1 or3l

and and2r slink4 or3r

or top:1 and2l and2r

end

loop t, 5, 100, 5

expr 1�sysprob(net, top:1; t)

expr 1�value(t;link,10)�value(t;link,9)

expr 1�value(t;link,10)�value(t;link,9)�value(t;link,8)�value(t;link,7)

bind temp 1�value(t;link,10)�value(t;link,9)�value(t;link,8)�value(t;link,7)

expr temp�value(t;link,6)�value(t;link,5)

expr temp�value(t;link,6)�value(t;link,5)�value(t;link,4)�value(t;link,3)

end

end

Result Transient analysis of the application at � = 0:1
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Figure 3.10: Transient analysis

3.3 Markov Regenerative Process [17]

3.3.1 Specification of model

mrgp name f(param list)g

� section 1: transitions and transition destributions

< nodename1 edgetype nodename2 ep>

� section 2: rewards (optional)

freward

< name expression>g

end

where nodename1 is the starting node and nodename2 is the destination node as in Markov

and semi-Markov models, edgetype is either for Markov regenerative edges, or for non-

regenerative edges, ep represents a distribution function, which could be zero, inf, prob(p),
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exp(�), gen, cgen, tgen, cdf, Erlang (n; �), hypoexp (�1; �2), hyperexp (�1; p1; �2; p2),

mixture (p1; p2; �), defective (p; �), inst unavail (�; �), ss unavail (�; �), oneshot (p),

activeE (�), activeU (�1; �2), standbyE (�; �sense), standbyU (�1; �2; �sense), binomial

(�; k; n), kofn ftree (�; k; n), kofn block (�; k; n), or any of user-defined distribution

functions. Detailed description of the first 8 distribution functions can be found in Ap-

pendix B of [14].

3.3.2 System analysis functions

Only steady-state solution of MRGP models is given and the following functions are sup-

ported:

� prob (sys name, nodename f; arglistg)

Gets the steady state probability for node nodename of the MRGP model named

sys name.

� exrss (sys namef; arglistg)

Calculates the expected steady-state reward rate value.

3.3.3 Example – Cellular Networks with Generally Distributed Hand-

off Traffic

Source

S. Dharmaraja, and K. Trivedi, Performance Analysis of Cellular Networks with Generally

Distributed Hand-off Traffic, COMMUNICATED, 2001.
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Description

Consider a single cell in a TDMA (Time Division Multiple Access) wireless system, where

the base transceiver system of the cell has N base repeaters, one controller and a local

area network connecting these subsystems. Each base repeater provides M time-division-

multiplexed channels. The cell reserves one channel for signaling transfer (namely control

channel), which resides in one ofN base repeaters. Therefore, the total number of available

channels for calls in the cell is NM � 1 (= C). For convenience in demonstrating the

approach, we assume that the system has hexagonal geometry and that the cellular system

is homogeneous. That is, all the cells are identical and have the same statistical behavior.

A call is accepted only when the cell can find a channel not in use, otherwise, the call

is rejected. Call arrivals in cellular system can be classified as new calls and hand-off

calls. New calls are generated by mobile originating or mobile terminating connections

established in the initial cells, whereas hand-off calls are ongoing calls transferring from

other cells. A hand-off call could fail due to insufficient bandwidth available in the new

cell, and in such case, a drop of hand-off call occurs.

The dropping of a hand-off call is considered more severe than the blocking of a new

call. One method ([7, 9]) to reduce the dropping probability of hand-off calls is to reserve

a fixed number of channels exclusively for hand-off calls. These exclusively reserved

channels are referred as guard channels. For example, if the total number of channels is C

and the number of guard channels in the channel pool is g, then the number of available

channels for new calls is C � g.

We assume that an ongoing call (new or hand-off) completion times are exponential

with parameter �d and the time at which the mobile station engaged in the call departs

the cell are exponential with parameter �h. We also assume that the inter-arrival times
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of hand-off calls are generally distributed with distribution function G(t) and with finite

mean 1=�h which is independent of new calls arrival time. Note that new calls who find all

C � g channels are busy leave the system whereas hand-off calls who find all C channels

are busy leave the system. The state transition diagram for this model is shown in Figure

3.11.

0 1 CC-1

λ λ

µµ µµ µ2 (C-g+1)(C-g)(C-g-1) µ(C-1)

. . .. ..

G G G G
G G G

C µ

C-g-1 C-g

n λ n λ n n

Figure 3.11: State transition diagram using MRGP modeling

SHARPE File — mrgp=cellular

format 8

bind

lambdaE 63

lambda 49

mu 1

end

� C = 5, g = 3

mrgp cellular5 3

0 � 1 exp(lambda)

1 � 0 exp(mu)

1 � 2 exp(lambda)

2 � 1 exp(2�mu)

3 � 2 exp(3�mu)

4 � 3 exp(4�mu)

5 � 4 exp(5�mu)

0 @ 1 Erlang(3, lambdaE)
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1 @ 2 Erlang(3, lambdaE)

2 @ 3 Erlang(3, lambdaE)

3 @ 4 Erlang(3, lambdaE)

4 @ 5 Erlang(3, lambdaE)

reward

2 1

3 1

4 1

5 1

end

� C = 6, g = 3

mrgp cellular6 3

0 � 1 exp(lambda)

1 � 0 exp(mu)

1 � 2 exp(lambda)

2 � 1 exp(2�mu)

2 � 3 exp(lambda)

3 � 2 exp(3�mu)

4 � 3 exp(4�mu)

5 � 4 exp(5�mu)

6 � 5 exp(6�mu)

0 @ 1 Erlang(3, lambdaE)

1 @ 2 Erlang(3, lambdaE)

2 @ 3 Erlang(3, lambdaE)

3 @ 4 Erlang(3, lambdaE)

4 @ 5 Erlang(3, lambdaE)

5 @ 6 Erlang(3, lambdaE)

reward

3 1

4 1
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5 1

6 1

end

� C = 7, g = 3

mrgp cellular7 3

0 � 1 exp(lambda)

1 � 0 exp(mu)

1 � 2 exp(lambda)

2 � 1 exp(2�mu)

2 � 3 exp(lambda)

3 � 2 exp(3�mu)

3 � 4 exp(lambda)

4 � 3 exp(4�mu)

5 � 4 exp(5�mu)

6 � 5 exp(6�mu)

7 � 6 exp(7�mu)

0 @ 1 Erlang(3, lambdaE)

1 @ 2 Erlang(3, lambdaE)

2 @ 3 Erlang(3, lambdaE)

3 @ 4 Erlang(3, lambdaE)

4 @ 5 Erlang(3, lambdaE)

5 @ 6 Erlang(3, lambdaE)

6 @ 7 Erlang(3, lambdaE)

reward

4 1

5 1

6 1

7 1

end
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expr prob(cellular5 3, 5)

expr exrss(cellular5 3)

expr prob(cellular6 3, 6)

expr exrss(cellular6 3)

expr prob(cellular7 3, 7)

expr exrss(cellular7 3)

end

3.4 Reliability Block Diagrams

3.4.1 Specification of model [14]

A reliability block diagram is specified by:

block name f ( param list ) g

<blockline>

end

An blockline has one of the following forms:

1. comp name ep

This is a basic component type. It is assigned a name, and an exponential polyno-

mial.

2. parallel name name name f name ... g

This represents components combined in parallel. The parallel system is assigned

the first name, and is composed of the rest of the names. There must be at least two

components.
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3. or name name name f name ... g

This represents components combined in series. The series system is assigned the

first name, and is composed of the rest of the names. There must be at least two

components.

4. kofn name expression, expression, name

This represents a k-out-of-n system having identical components. The gate is as-

signed the first name. The first expression gives k and the second expression gives

n; the second name gives a component or sub-block. The first name is assumed to

consist of n identically distributed (independent) copies of the second name. In order

for the system to be operating, k of the components must be operating.

5. kofn name expression, expression, name name f name ... g

This represents a k-out-of-n system whose components need not be identical. The

system is assigned the first name. The first expression gives k and the second expres-

sion gives n. The names following the second expression are the components to the

system; there must be at least two.

Detailed description of how to analyze reliability block diagrams can be found in Ap-

pendix B of [14].

3.4.2 Example – 2 Processors, 3 Memories System

Description

A system has 2 processors and 3 Memories. Each processor has a failure rate �p. Each

memory has a failure rate �m. The system is up if at least one processor and at least k (1

or 2) memories are up. The reliability block diagram for k = 1 is shown in Figure 3.12.
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Figure 3.12: Reliability block diagram for the 2 processors, 3 memories system

SHARPE File — block=2p3m.block

� Two�processors, three�memories system

� Use a block diagram to model system reliability

� k is the minimum number of memories needed

format 8

block nodep(k)

comp proc exp(lambdap)

comp mem exp(lambdam)

parallel procs proc proc

kofn mems k,3,mem

series top procs mems

end

� Now assign failure rate values
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bind

lambdap 1/720

lambdam 1/(2�720)

end

� Compare mean time to system failure under

� two conditions: a minimum of

� one memory required vs. 2 memories

� find the difference between the use of tvalue and value

expr mean(nodep;1), mean(nodep;2), mean(nodep;1)/mean(nodep;2)

� Now compare system unreliabilities

func unrel1(t) tvalue(t;nodep;1)

func unrel2(t) tvalue(t;nodep;2)

loop t,0,50,10

expr unrel1(t), unrel2(t)

end

end

3.5 Fault Trees

3.5.1 Specification of model

A fault tree is specified by the following:

ftree name f ( param list ) g

<ftreeline>

end

An ftreeline has one of the following forms:
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1. basic name ep

This is a basic component type. It is assigned a name, and an exponential polyno-

mial. Whenever this name appears later in the fault tree specification, it is interpreted

as being a physically distinct copy of an event type having the assigned exponential

polynomial.

2. repeat name ep

This is also a basic event assigned a name and an exponential polynomial. In this

case, whenever this name appears later in the fault tree specification, it is interpreted

as being the same physical event.

3. not name name

This represents a “not” gate. The gate output is assigned the first name, and the

second names form the input to the gate. See the example C.1.2.

4. transfer name name

The second name must have been previously defined using basic or repeat. When-

ever the first name appears later in the fault tree specification, it is interpreted as

being the same physical component as the second name.

5. and name name name f name ... g

This represents an “and” gate. The gate is assigned the first name, and the rest of the

names form the inputs to the gate. There must be at least two inputs.

6. nand name name name f name ... g

This represents a “nand” gate. The gate output is assigned the first name, and the

rest of the names form the inputs to the gate. There must be at least two inputs. See

the example C.1.1.
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7. or name name name f name ... g

This represents an “or” gate. The gate is assigned the first name, and the rest of the

names form the inputs to the gate. There must be at least two inputs.

8. nor name name name f name ... g

This represents a “nor” gate. The gate is output assigned the first name, and the rest

of the names form the inputs to the gate. There must be at least two inputs. See the

example C.1.1.

9. kofn name expression, expression, name

This represents a k-out-of-n gate having identical inputs. The gate is assigned the

first name. The first expression gives k and the second expression gives n. The

inputs to the gate are assumed to be n identically distributed, independent copies of

the second name.

10. nkofn name expression, expression, name

This represents a not k-out-of-n gate having identical inputs. The gate output is

assigned the first name. The first expression gives k and the second expression gives

n. The inputs to the gate are assumed to be n identically distributed, independent

copies of the second name.

11. kofn name expression, expression, name name f name ... g

This represents a k-out-of-n gate whose inputs need not be identical. The gate is

assigned the first name. The first expression gives k and the second expression gives

n. The names following the second expression are the inputs to the gate; there must

be at least two.

12. nkofn name expression, expression, name name f name ... g

This represents a not k-out-of-n gate whose inputs need not be identical. The gate is

assigned the first name. The first expression gives k and the second expression gives
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n. The names following the second expression are the inputs to the gate; there must

be at least two. The inputs are assumed to be configured so that the system only fails

if k of the inputs fail. See the example C.1.2.

In forms 2 through 8, the names making up the block must already be defined.

3.5.2 System analysis functions

New analysis functions and new features are listed as the following. Other analysis func-

tions are described in Appendix B of [14].

1. mincuts(system name f; arglistg)

This prints out the set of mincuts of a fault tree (See the example C.1.3).

2. Results for gate:

User can obtain results at each gate output by assigning the name of the gate to

state eword in corresponding function. For example, if the cdf is asked for gate, gn,

in a fault tree, ft, cdf(ft, gn) can give the result.

3. Importance measure for an event:

Three types of importance measure can be obtained from a fault tree model (see the

example C.1.4):

(a) bimpt(t; system name, event name f; arglistg)

This gives Birnbaum’s importance for event, event name, at time t.

(b) cimpt(t; system name, event name f; arglistg)

This gives criticality importance for event, event name, at time t.

(c) simpt(system name, event name f; arglistg)

This gives structural importance for event, event name.

107



3.5.3 Example – 2 Processors, 3 Memories System

Description

This is the same system introduced in chapter 3.4.2. The corresponding fault tree is in

Figure 3.13, where P1 and P2 represent the two processors, and M1, M2, and M3 de-

note the three memories, respectively. Furthermore, �p and �m have been introduced as

independent repair rates for each processor and each memory, respectively. Then, the in-

stantaneous unavailability of the system has been calculated via the model named indrep

in the SHARPE file listed at the chapter 3.5.3.

Figure 3.13: Fault tree for the 2 processors, 3 memories system

SHARPE File — ftree=2p3m.ftree

� 2 processors, 3 memories system modeled by fault tree

format 8
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ftree nodepf(k)

basic proc exp(lambdap)

basic mem exp(lambdam)

and procs proc proc

kofn mems (4�k),3,mem

or top procs mems

end

� Now assign failure rate values

bind

lambdap 1/720

lambdam 1/(2�720)

end

� note the difference in kofn of ftree with block

� Compare answers obtained by two

� distinct models of the same system

expr mean(nodepf;1), mean(nodepf;2), mean(nodepf;1)/mean(nodepf;2)

� Assume Independent Failure And Independent Repair

� model system insta. availability

ftree indrep(k)

basic proc inst unavail(lambdap,mup)

basic mem inst unavail(lambdam,mum)

and procs proc proc

kofn mems (4�k),3,mem

or top procs mems

end

� Assign Repair Rate Values

bind

mup 1/2.5
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mum 1/2.5

end

� Now compare system unavailabilities

func unavail1(t) tvalue(t;indrep;1)

func unavail2(t) tvalue(t;indrep;2)

loop t,0,50,10

expr unavail1(t), unavail2(t)

end

end

3.6 Reliability Graphs

3.6.1 Specification of model

A reliability graph is specified by the following:

relgraph name f ( param list ) g

� section 1: unidirectional edges

<edge name edge name ep f transfer edge1 name edge1 namef edge2 name

edge2 name : : : gg>

� section 2:bidirectional edges (optional)

f bidirect

<edge name edge name ep f transfer edge1 name edge1 namef edge2 name

edge2 name : : : gg>g

end

The transfer part in the above specification is the extension that defines the repeated

edges. The edge1 from the first edge1 name to the second edge1 name is repeated for the
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edge from the first edge name to the second edge name. So are the optional edges from

the fist edgei name to the second edgei name. Examples of repeated edges are listed in

chapter 3.6.3.

3.6.2 System analysis functions

Two new types of system analysis functions are integrated as the following (for others, see

Appendix B of [14]):

1. Mincuts and minpaths set:

(a) mincuts(system name f; arglistg)

This prints out the set of mincuts of a reliability graph. See the example C.2.1.

(b) minpaths(system name f; arglistg)

This prints out the set of minpaths of a reliability graph. See the example C.2.2.

2. Importance measure for an edge:

Three types of importance measure can be obtained from a reliability graph model

(see the example C.2.3):

(a) bimpt(t; system name, node name, node name f; arglistg)

This gives Birnbaum’s importance for edge, (node name, node name), at time

t.

(b) cimpt(t; system name, node name, node name f; arglistg)

This gives criticality importance for edge, (node name, node name), at time t.

(c) simpt(system name, node name, node name f; arglistg)

This gives structural importance for edge, (node name, node name).
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3.6.3 Examples

2 Processors, 3 Memories System with Inter-connection Dependence

Description This is still a system with 2 processors and 3 memories. Compared to the

system mentioned in chapter 3.4.2 and chapter 3.5.3, inter-connection dependence has been

considered. Processor P1 only uses memory M1 and M3, and processor P2 only uses

memory M2 and M3. The system is up when at least one processor and one memory are

working. In the following SHARPE file, the model rel proc mem2 is based on repeated

edges. The reliability graph for the model rel proc mem is shown in Figure 3.14.

Figure 3.14: Reliability graph for the 2 processors, 3 memories system with in-
ter-connection dependence without repeated edges

SHARPE File — relgraph=repeat.txt

� reliability graph for

� 2�processor,

� 3�memory system

relgraph rel proc mem

src P1 exp(1/Ptime)

src P2 exp(1/Ptime)

P1 sink exp(1/Mtime)

P2 sink exp(1/Mtime)
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P1 share inf

P2 share inf

share sink exp(1/Mtime)

end

bdd on

relgraph rel proc mem2

src P1 exp(1/Ptime)

src P2 exp(1/Ptime)

P1 sink exp(1/Mtime)

P2 sink exp(1/Mtime)

P1 sink exp(1/Mtime) transfer P2 sink

end

bind

Ptime 720

Mtime 2�720

end

pqcdf(rel proc mem)

cdf(rel proc mem)

pqcdf(rel proc mem2)

cdf(rel proc mem2)

end

An Electrical-pyrotechnic System

Source A. Birolini, Quality and Reliability of Technical Systems, Springer-Verlag, Berlin

Heidelberg, New York, 1994.
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Description To separate a satellite’s protective shielding, a special electrical-pyrotechnic

system shown in Figure 3.15 is used. An electrical signal comes through the cables E1 and

E2 (redundancy) to the electrical-pyrotechnic signal to explosive charges for guillotining

bolts E12 and E13 of the tensioning belt. The charges can be ignited from two sides, al-

though one ignition will suffice (redundancy). For fulfillment of the required function,

both bolts must be exploded simultaneously. Calculate the probability of failure of this

separation system.

Figure 3.15: A special electrical-pyrotechnic system

SHARPE File — relgraph=ex2.15

relgraph ex2.15(e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13)

src p1 exp(e1)

src p1 exp(e2)

p1 p2 exp(e3)
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p2 p4 exp(e4) transfer p8 p10

p2 p3 exp(e5) transfer p8 p9

p6 p7 exp(e6)

p12 p13 exp(e7)

p5 p7 exp(e8)

p11 p13 exp(e9)

p4 p6 exp(e10) transfer p10 p12

p3 p5 exp(e11) transfer p9 p11

p7 p8 exp(e12)

p12 sink exp(e13)

end

pqcdf(ex2.15; 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)

end

3.7 Series-parallel Acyclic Directed Graphs

3.7.1 Specification of model

A series-parallel graph is specified as follows:

graph name f(param list)g

<name f name g >

end

<graphline>

end

A graphline has one of the following forms:
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1. dist name ep

this assigns the given ep, which is a defined distribution function, to the given graph

node. An ep must be specified for each graph node.

2. exit name exit type

This assigns the given exit type to the given node. For every node that has more than

on exiting edge, an exit type must be specified. If a graph called g has more than

one entrance node (node with no predecessors), then SHARPE supplies an dummy

entrance node called E.g with zero exponential polynomial and edges leading from

E.g to each user-specified entrance node. When this is the case, the user must supply

an exit type for the node E.g.

3. prob name name expression

The expression gives a probability value to be assigned to the edge going from the

first name to the second name. For each node x that has n successors and whose

exit type is prob, probability values must be assigned to at least n � 1 of the edges

leading out of x. If values are given for all of the edges, the sum of the values must

be 1. If one value is missing, the sum of the values must be less than 1 and SHARPE

will compute the missing value.

4. multpath

This line requests multiple-path information for the system. Whenever there are

probabilistic subgraphs that are not inside maximum, minimum, or k-out-of-n sub-

graphs, SHARPE considers the graph to contain more than one path. If multiple-path

information is requested, SHARPE will compute for each path the probability of tak-

ing the path and the conditional distribution for the time-to-finish, given that the path

is taken.

The exit types (exit type) are
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1. prob

The parallel subgraphs are probabilistic.

2. max

All of the parallel subgraphs must complete before going on.

3. min

One of the parallel subgraphs must complete before going on.

4. kofn expression, expression

The first expression gives k and the second expression gives n; k out of the n parallel

subgraphs must complete before going on. If this exit type is specified for a graph

with exactly one successor node, that node is assumed to be duplicated n times, with

each copy being identically distributed. Except for this case, it is required that a node

with kofn exit type have exactly n following parallel subgraphs.

Detailed description of how to analyze series-parallel acyclic directed graph can be

found in Appendix B of [14].

3.7.2 Example – A CPU-Input=Output Overlap System

Source

D.F. Towsley, J.C. Browne and K.M. Chandy, Models for Parallel Processing within Pro-

grams, CACM, October, 1978.
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Description

Figure 3.16 shows a series-parallel graph representing one iteration of the program with

CPU-Input=Output Overlap. In each iteration of the program, there are two stages. The

first stage is always a CPU burst. The second stage consists of either pure I=O, or I=O that

may be overlapped with a second CPU burst. As in Figure 3.16, the probability that the

second stage contains CPU-I=O overlap is given by p. In the following SHARPE file, the

model OVERLAP represents the model in Figure 3.16, while the model SERIAL denotes the

model without CPU-I=O overlap. The speedup for various values of p has been computed.

CPU1

ZERO

CPU2

IO1

IO2

prob

max

p 1-p

λexp(   )

exp(     )µ1

µ2exp(     )

λexp(   )

Figure 3.16: Precedence graph for the CPU-I=O overlap system

SHARPE File — th=24

� CPU�I/O overlap

bind

mu1 1 / 0.0376

mu2 1 / 0.125

lambda 1 / 0.14995

end

graph SERIAL(p)
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cpu1 cpu2

cpu2 io2

cpu1 io1

end

exit cpu1 prob

prob cpu1 cpu2 p

dist cpu1 exp ( mu1)

dist io1 exp ( lambda)

dist cpu2 exp ( mu2)

dist io2 exp ( lambda)

end

graph OVERLAP(p)

cpu1 zero1

cpu1 io1

zero1 cpu2

zero1 io2

end

exit cpu1 prob

prob cpu1 zero1 p

exit zero1 max

dist cpu1 exp ( mu1)

dist zero1 zero

dist io1 exp ( lambda)

dist cpu2 exp ( mu2)

dist io2 exp ( lambda)

end

expr mean(SERIAL;0.7)

expr mean(OVERLAP;0.7)

119



expr mean(SERIAL;0.6)/mean(OVERLAP;0.6)

expr mean(SERIAL;0.7)/mean(OVERLAP;0.7)

expr mean(SERIAL;0.8)/mean(OVERLAP;0.8)

expr mean(SERIAL;0.9)/mean(OVERLAP;0.9)

expr mean(SERIAL;1.0)/mean(OVERLAP;1.0)

bind

mu1 1 / 0.01

end

expr mean(SERIAL;1.0)/mean(OVERLAP;1.0)

end

3.8 Single-chain Product-form Queueing Networks

3.8.1 Specification of model

A single-chain product-form queueing network is specified as follows:

pfqn name f(param list)g

� section 1: station-to-station probabilities

<station name station name expression>

end

� section 2: station types and parameters

<stationline>

end

section 3: number of customers per chain

<chain name expression>

end
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An blockline has one of the following forms:

1. station name is rate

The station is an infinite server; each job at the server has exponential service-time

CDF with the specified rate.

2. station name fcfs rate

The station is a first-come-first-serve server. Jobs in the queue are served once at

a time; the job being served (if any) has exponential service-time CDF with the

specified rate.

3. station name ps rate

Jobs at the station share the server. When n jobs are at the station, each has expo-

nential service-time CDF with rate rate=n.

4. station name lcfspr rate

The serving algorithm is ”last come first served, preemptive resume”.

5. station name ms number of servers, rate

The station contains multiple servers; the number of servers is given by the expres-

sion number of servers. Each server has the same rate.

6. station name lds rate, rate, : : :

There is one server, whose service rate depends on the number of jobs at the station.

The first rate applies when there is one job, the second rate when there are two jobs,

and so on. If there are fewer rates given than the maximum number of jobs, the last

rate on the line is assigned to all numbers of jobs for which no rate was explicitly

given.

Detailed explanation of how to analyze single-chain product-form queueing networks

can be found in Appendix B of [14].
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3.8.2 Example — a Terminal-oriented System with a Limited Number

of Memory Partitions [16]

Description

This is the example 9:16 in [16]. As shown in Figure 3.17, the system has M terminals.

Only n active jobs can concurrently share the main memory, which means M = n. Also,

there is an assumption that the main memory is large enough so that no waiting in the job

queue is required, which means the station term is an infinite server with the key word

is assigned to it as mentioned in the previous section. The model tested in the following

SHARPE file has m = 3.

Maximum number of
jobs in the CPU-I/O
subsystem is limited
to 

���� ����
��
��
��

�
�
�
�

������

CPU

0

IO

pm
IOm

1
p1

...

p
0

1

2

M

 n

Figure 3.17: a Terminal-oriented System with a Limited Number of Memory Partitions

SHARPE File — pfqn=9.16-nocon

� This example is Ex 9.16 from the book.

� This implements the queueing network ignoring the

� memory constraint. This corresponds to E[Rˆ] in table 9.12
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bind

p0 0.05

p1 0.5

p2 0.3

p3 0.15

scpu 89.3

sio1 44.6

sio2 26.8

sio3 13.4

sterm 1/15

end

pfqn ex9.16(n)

cpu term p0

cpu io1 p1

cpu io2 p2

cpu io3 p3

io1 cpu 1

io2 cpu 1

io3 cpu 1

term cpu 1

end

cpu fcfs scpu

term is sterm

io1 fcfs sio1

io2 fcfs sio2

io3 fcfs sio3

end

cust n

end
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func ET(N) scpu�util(ex9.16,cpu;N)�p0

func ER(M) M/ET(M)� 1/sterm

expr ER(10)

expr ER(20)

expr ER(30)

expr ER(40)

expr ER(50)

expr ER(60)

end

3.9 Multiple-chain Product-form Queueing Networks

3.9.1 Specification of model

A multiple-chain product-form queueing network is specified as follows:

mpfqn name f(param list)g

� section 1: station-to-station probabilities for each chain

<chain chain name

<station name station name expression>

end>

end

� section 2: station types and parameters

<stationline>

f <chain name expression, : : :> g

end>

end
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� section 3: number of customers per chain

<chain name expression>

end

Detailed explanation of how to analyze multiple-chain product-form queueing net-

works can be found in Appendix B of [14].

3.9.2 Example — a Terminal-oriented System with a Limited Number

of Memory Partitions [16]

Description

This is the multiple-chain product-form queueing network version of the system mentioned

in chapter 3.8.2.

SHARPE File — mpfqn=inp9.16b

� This example is Ex 9.16 from the book. This implements the queueing

� network ignoring the

� memory constraint. This corresponds to E[Rˆ] in table 9.12

� results should be the same as for pfqn/9.16�nocon

bind

p0 0.05

p1 0.5

p2 0.3

p3 0.15

scpu 89.3

sio1 44.6
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sio2 26.8

sio3 13.4

sterm 1/15

end

mpfqn ex9.16(n)

chain cust

cpu term p0

cpu io1 p1

cpu io2 p2

cpu io3 p3

io1 cpu 1

io2 cpu 1

io3 cpu 1

term cpu 1

end

end

cpu fcfs scpu

end

term is sterm

end

io1 fcfs sio1

end

io2 fcfs sio2

end

io3 fcfs sio3

end

end

cust n

end

func ET(N) scpu�mutil(ex9.16,cpu;N)�p0

func ER(M) M/ET(M)� 1/sterm

expr ER(10)
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expr ER(20)

expr ER(30)

expr ER(40)

expr ER(50)

expr ER(60)

end

3.10 Markov Chains

3.10.1 Specification of model

A Markov chain is specified as follows:

markov name f(param list)g f readprobs g

� section 1: transitions and transition destributions

<markov edgeline>

� section 2: rewards (optional)

freward f default expressiong

<markov setlineg>g

end

� section 3: initial state probabilities

f<markov setline>g

end

f fastmttf

< name reada >

< name readf >

end g
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where markov edgeline are either

name name expression

or

loop simple var, low, high f,increment g

<markov edgeline>

end

and markov setline are either

name expression

or

loop simple var, low, high f,increment g

<markov setline>

end

which you can set reward rate or initial values to the node name.

Normally, an irreducible Markov chain doesn’t have been specified with initial state

probabilities, which means it is not necessary for an irreducible Markov chain to have

section 3 unless users specify readprobs. Also, without initial state probabilities, tvalue

and prob cannot be applied to irreducible Markov chains.

Fast mean time to failure(MTTF) is introduced from the paper [6] and requires the

operating system running SHARPE supports IEEE 754 floating point standard. See the

example at chapter C.3.1.
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Detailed information of how to analyze Markov chains can be found in Appendix B of

[14].

3.10.2 Example — Erlang Loss Model

Description

Consider a telephone switching system having n trunks with an infinite caller population.

The arrival times are exponentially distributed with rate � and call holding times are expo-

nentially distributed with average 1

�
. When an arriving call finds all n trunks are busy, it is

lost without further trying. Given number of non-failed channels, the principal quantity of

interest is the blocking probability, which is obtained by the steady-state probability that

all trunks are busy. The state diagram is shown in Figure 3.18.

i- i

i

21

µ

 . . . .
λ

2µ 3

λλ λ

µ

10

µ

Figure 3.18: State diagram for the Erlang loss performance model

Assume that a single repair unit is shared by all the trunks. Also assume that the times

to trunks failures and repair are exponentially distributed with rate  and � , respectively.

The availability model is the CTMC in Figure 3.19.

ττ

γ γ(n- )(n- ) γ

τ
n-

nγ γ

n- 1 0

τ τ

n  . . . .

1 2

1 2

2

Figure 3.19: State diagram for the Erlang loss availability model
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The composite model is shown in Figure 3.20. The state (i; j) represents that i non-

failed trunks and j calls are currently in the system.

 1(n- ) γ
 1(n- ) γ

λ λ λ λ λ
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Figure 3.20: State diagram for the Erlang loss performability composite model

SHARPE File — bluebook=8.27

� This example is Ex 8.27 from the book.

� This implements the Erlang loss model.

format 8

bind

lambda 49

mu 3
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MTTF 1000

MTTR 24

end

� Hierarchical Model

� Availability submodel

markov perf(C)

loop i,0,C�1

$(i) $(i+1) lambda

$(i+1) $(i) (i+1)�mu

end

end

end

� function to use to define the reward rates for the measure

� the total call blocking probability

� Reward function used for k>g

func Rew(C) prob(perf,$(C);C)

markov hier

loop i,C,1,�1

$(i) $(i�1) i/MTTF

$(i�1) $(i) 1/MTTR

end

reward

0 1

loop i,1,C

$(i) Rew(i)

end

end

� Initial probability
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$(C) 1

end

loop nb,35,45,1

bind C nb

expr exrss(hier)

end

var Td exrss(hier)

loop nb,35,45,1

bind C nb

expr Td

end

� Composite model

markov cp

loop j,1,C,1

� Definition of the Availability part of the model

� Downwards failure

loop i,C,j,�1

$(i) $(j�1) $(i�1) $(j�1) (i�j+1)/MTTF

$(i�1) $(j�1) $(i) $(j�1) 1/MTTR

� Definition of the Performance part of the model

$(i) $(j�1) $(i) $(j) lambda

$(i) $(j) $(i) $(j�1) j�mu

� Diagonal failure

$(i) $(j) $(i�1) $(j�1) (j)/MTTF

end

end

end

end
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� Outputs

� Total call blocking probability

var Tb sum(i,0,C, prob(cp,$(i) $(i)))

var Unavail prob(cp,0 0)

loop nb,35,45,1

bind C nb

expr Tb

end

end

Result
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Figure 3.21: Total blocking probability in the Erlang loss performability model
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3.11 Semi-Markov Chains

3.11.1 Specification of model

A semi-Markov chain is specified as follows:

semimark name f(param list)g f cond j uncond g

� section 1: transitions and transition destributions

<nodename1 nodename2 ep>

� section 2: rewards (optional)

freward f default expressiong

<name expression>g

end

section 3: initial state probabilities

f<name expression>g

end

f fastmttf

< name reada >

< name readf >

end g

An irreducible semi-Markov chain doesn’t have section 3. The key word fastmttf is used

for fast MTTF [6]. See the example C.3.2.

Detailed information of how to analyze semi-Markov chains can be found in Appendix

B of [14].
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2

0

1

Figure 3.22: A semi-Markov chain

3.11.2 Example — Figure 3.22

SHARPE File — semimark=1

semimark main

2 1 genn

1, 0, 0n

�1, 0, �lambdan

�lambda, 1, �lambda

2 0 exp (.01)

end

end

bind

lambda .02

end

lcdf (main,2)

cdf (main,1)

cdf (main,0)

end
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3.12 Generalized Stochastic Petri Nets

3.12.1 Specification of model

A generalized stochastic Petri Net(GSPN) is specified as follows:

gspn name (param list)

� section 1: places and initial numbers of tokens

<place name expression>

end

� section 2: timed transition names, types and rates

<transition name ind expression>

<transition name dep place name expression>

end

� section 3: immediate transition names, types and weights

<transition name ind expression

<transition name dep place name expression>

end

� section 4: place-to-transition arcs and multiplicity

<place name transition name expression>

end

� section 5: transition-to-place arcs and multiplicity

<transition name place name expression>

end

� section6: inhibitor arcs and multiplicity

<place name transition name expression>

end
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Detailed information of how to analyze generalized Stochastic Petri Nets can be found

in Appendix B of [14].

3.12.2 Example — M=M=1=K Queue with Server Failure and Repair

Description

The system has 1 server with buffer length K. So K jobs can be in the system at a time.

The exponentially failure and repair rates for the server are  and � , respectively. See the

Figure 3.23.

queue

server-
down

job-
source

server-
up

K

job-arrival service

repair

1

0λ=1 µ=2

γ=.0001 τ=.10

failure

Figure 3.23: GSPN model for queue with server failure and repair

SHARPE File — whitebook=mm1k.gspn

� Initialize Variables

bind

LAM 1

MU 2

GAM 0.0001

TAU 0.1
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inhibtok 1

end

gspn mm1k(K)

� Initial # of Tokens in Places

jobsource K

queue 0

serverup 1

serverdown 0

end

� Rates of Timed Transitions

jobarrival ind LAM

service ind MU

failure ind GAM

repair ind TAU

end

� No Immediate Transitions

end

� Input Arcs

jobsource jobarrival 1

queue service 1

serverup failure 1

serverdown repair 1

end

� Output Arcs

jobarrival queue 1

service jobsource 1

failure serverdown 1

repair serverup 1

end

� Inhibit Arcs

serverdown service inhibtok
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end

var Lreject LAM�prempty(mm1k,jobsource;10)

var Pidle prempty(mm1k,queue;10)

var Preject prempty(mm1k,jobsource;10)

var avquelength etok(mm1k, queue; 10)

var thruput tput(mm1k, service; 10)

var utilization util(mm1k, service; 10)

expr Pidle

expr Lreject, Preject

expr avquelength

expr thruput, utilization

end
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Appendix A

SHARPE Data Structure

Important data structures of SHARPE source code are listed here. Rectangles represent

instances of data types with the name of each data type at the top of rectangles. These data

types are structures or unions in C language. For the sake of saving space, only important

member field(s) are listed at the attribute field of each rectangle. Arcs represent pointers.

If an arc begins from a rectangle, it is a field of the data type that the rectangle represents.

Rectangles are piled together to denote arrays in C.
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Attribute:
ee_type = ET_HEAD

eeT

Attribute:
ee_type =
ET_SYMBOL
ee_info.param(or
symbol_index)

eeT

ee_next

A + B * C + A * 100.96 stored as A B C * + A 100.96 * +

Attribute:
ee_type =
ET_SYMBOL
ee_info.param(or
symbol_index)

eeT

ee_next

Attribute:
ee_type =
ET_SYMBOL
ee_info.param(or
symbol_index)

eeT

Attribute:
ee_type =
ET_MULTIPLY

eeT

ee
_n

ex
t

Attribute:
ee_type = ET_ADD

eeT

ee
_n

ex
t

Attribute:
ee_type =
ET_SYMBOL
ee_info.param(or
symbol_index)

eeT

ee_next

A B

C

*

+

A

Attribute:
ee_type =
ET_NUMBER
ee_info.value =
100.96

eeT

ee_next

Attribute:
ee_type =
ET_MULTIPLY

eeT

Attribute:
ee_type = ET_ADD

eeT

ee
_n

ex
t

ee
_n

ex
t

ee
_n

ex
t

ee
_n

ex
t

100.96

*

+

eeP returnPoint

Basic EXPRESSION Sample

141



Expression List:
expression, expression, expression, ...
OR
expression
expression
...

Advanced Expression I

Attribute:
ee_type = ET_CDF

eeT

Attribute:
ee_type =
ET_PLACE_OR_TRANS
ee_info.sys_index

eeT

ee_firstarg ee_nextarg
Attribute:
ee_type =
ET_EXPRESSION

eeT

Attribute:
ee_next

eeT

ee_nextarg
Attribute:
ee_next

eeT

ee_nextarg
Attribute:
ee_next

eeT

ee_nextarg

......

Attribute:

name_exprT

ee_info.com
p_nam

e

Attribute:
ee_next

eeT

expresion list

ee_nextarg

Attribute:
ee_next

eeT
ee_nextarg ee_nextarg

......

Buildin Function Node:
CDF(gspn_g, node1; a, b c)
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Advanced Expression II

Attribute:
ee_type =
ET_FUNCTION
ee_info.symbol_inde
x

eeT

Attribute:
ee_next

eeT

argument list

Attribute:
ee_next

eeT

ee_nextarg ee_nextarg

......

User Defined Function

epsilon epsilon_id expression

Attribute:
ee_type =
ET_EPSILON
ee_info.input_str

eeT

Attribute:
ee_type =
ET_EPSILON
ee_info.epsilon_pt

eeT
ee_firstarg

Attribute:
ee_next

eeT

ee_nextarg

ee_firstarg

bind simple_var expression
OR
bind
<simple_var expression >
end

Attribute:
ee_type =
ET_SYMBOL
ee_info.symbol_inde
x

eeT

Attribute:
ee_next

eeT

Attribute:
ee_next

eeT

ee
_n

ex
ta

rg

ee_nextarg

Attribute:
ee_type =
ET_SYMBOL
ee_info.symbol_inde
x

eeT

ee_nextarg

......

Attribute:
ee_type = ET_BIND

eeT

ee_nextarg

ee_firstarg
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Advanced Expression III

Attribute:
ee_type = ET_LOOP

eeT

loop simple_var, low, high {, increment}
<<loop > | <while_ statement > | <bind simple_var expression > | <expr expression {, expression ...} > | <epsilon e_type expression >>
end

Attribute:
ee_type =
ET_PARAMETER

eeT
ee_firstarg

Attribute:

paramT
ee_info.param

Attribute:
ee_next

eeT

ee_nextarg

Attribute:
ee_next

eeT

Attribute:
ee_next

eeT

ee
_n

ex
ta

rg

<loop >
<bind simple_var expression >
<expr exression {, exression ...} >
<epsilon e_type expression >
<name name expression >
<name expression >

ee
_n

ex
ta

rg

ee_nextarg

low

high

increment
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Extended Expression I     ---- if- statement
if ((#(procup) == 0) and (#(memup) == 0) and (#(swup) ==0))
 0
elseif (......)
<<if- statement >|<bind simple_var expression > | < expression > | <epsilon e_type expression >>
else
<<if- statement >|<bind simple_var expression > | < expression > | <epsilon e_type expression >>
end

Advanced Expression IV

Attribute:
ee_type = ET_IF

eeT
ee_bool

Attribute:
ee_type = ET_AND

eeT

ee
_f

ir
st

ar
g

Attribute:
ee_type =
ET_NUMBER

eeT

ee_next

Attribute:
ee_type = ET_HEAD

eeT

ee_next
0

ee
_n

ex
ta

rg
...

...

ee_next
Attribute:
ee_type = ET_HEAD

eeT

Attribute:
ee_type = ET_BOOL

eeT

ee
_n

ex
t

Attribute:
ee_type = ET_BOOL

eeT

ee
_n

ex
t

Attribute:
ee_type = ET_AND

eeT
ee_next

Attribute:
ee_type = ET_BOOL

eeT

ee
_n

ex
t

ee
_n

ex
t

#(proup)==0

#(memup)==0

#(swup)==0

Attribute:
ee_type = ET_ELSEIF

eeT

ee_nextarg

ee_bool

ee_nextarg

......

......

Attribute:
ee_type = ET_ELSE

eeT

ee_nextarg

ee_firstarg

......

ee_firstarg

......
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Advanced Expression V

Extended Expression II
#(procup)==0

Attribute:
ee_type = ET_EQU |
ET_NOTEQU |
ET_LESS |
ET_NOTLESS |
ET_GREATER |
ET_NOTGREATER

eeT ee_next

......

ee_firstarg

Attribute:
ee_type = ET_MARK
ee_info.sys_index

eeT

Attribute:
ee_type =
ET_NUMBER

eeT

ee
_n

ex
ta

rg

ee
_n

ex
t

Attribute:
ee_type = ET_HEAD

eeT

ee
_n

ex
t

0
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Advanced Expression VI

Extended Expression II     ---- while- statement
while  (diff > 0.00001 and index  < 100)
<<while- statement >
  <loop >
  <if- statement >
  <bind simple_var expression >
  <expr expression {, expression ... }>
  <expression >
  <epsilon e_type expression >>
end

Attribute:
ee_type =
ET_WHILE

eeT
ee_bool

Attribute:
ee_type = ET_AND

eeT

ee
_f

ir
st

ar
g

...
...

ee_next
Attribute:
ee_type = ET_HEAD

eeT

Attribute:
ee_type = ET_BOOL

eeT

ee_next

Attribute:
ee_type = ET_BOOL

eeT
ee_next

ee_next

index < 100 diff > 0.00001
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Advanced Expression VII

Distribution Expression:
ZERO/INF  (1)
WEIBULL (2)
GEN/CGEN/TGEN (3)
EXP/PROB/Used-defined (4)

Attribute:

udistT
u_num_dist

ZERO/INF  (1)

u_args

WEIBULL (2)

u_sym_dist

Attribute:
se_a_sym
se_b_sym
se_k_sym
se_a_sym_c
se_b_sym_c

symnodeT

Attribute:
se_a_sym
se_b_sym
se_k_sym
se_a_sym_c
se_b_sym_c

symnodeTse_next

se_next

......

GEN/CGEN/TGEN (3)

Attribute:
ee_type =
ET_DISTRIBUTION
ee_info.symbol_index

eeT

u_
fu

nc
_d

is
t

Attribute:
ee_next

eeT

argument list

Attribute:
ee_next

eeT

ee_nextarg ee_nextarg

......

ee_frstarg

EXP/PROB/Used-defined (4)
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Symbol Table

symP symtab

Distribution Function:

Attribute:
sy_name
sy_type = ET_DISTRIBUTION
sy_dist_type = DT_NUMBER

symtab_entryT

Attribute:

......

......

udistT
sy_udist

Attribute:
p_name
p_value

paramT

sy_paramlist

p_next

User Defined Function:

Attribute:
sy_name
sy_type = ET_FUNCTION
sy_depfunc

symtab_entryT

Attribute:

......

......

eeT
sy_exp

Attribute:
p_name
p_value

paramT

sy_paramlist

p_next

var  defined_var expression

Attribute:
sy_name
sy_type = ET_EXPRESSION

symtab_entryT

Attribute:

......

......

eeT
sy_exp

ee_nextarg
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Attribute:

nodeT

System - Graph

system_infoP system_info

Attribute:
s_name
s_type = SKW_GRAPH
s_paramlist
s_multpath

/* before topsort */
s_names
s_num_names
s_size_names
s_successor
s_count_pred
s_lastnode

/* after topsort */
s_node_info
s_size_node_info

system_infoT

Attribute:
i_name = "E."
i_dist_type = DT_NO_DIST

node_infoTs_node_info

Attribute:
i_name
i_dist_type

node_infoT

......

i_
su

cc

Attribute:

nodeT

...
...

Attribute:
i_name
i_dist_type

node_infoT

dist name distri-ep

i_udist

Attribute:

udistT

n_
ne

xt

Attribute:

nodeT

n_
ne

xt

Attribute:
i_name
i_entry = NT_PROB |
NT_MAX | NT_MIN

node_infoT

exit name exit_type (except kofn)

Attribute:
i_name

node_infoT

exit name kofn expression, expression
i_k_sym

i_n_sym

Attribute:

eeT

Attribute:

eeT

n_id

n_id

Attribute:
i_name

node_infoT

prob name name expression

Attribute:

eeTi_prob_sym

n_
ne

xt

n_id
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System - Block | Fault Tree | MFT

system_infoP system_info

Attribute:
s_name
s_type = SKW_BLOCK |
SKW_FTREE_REPEAT |
SKW_FTREE_NOREPEAT
s_paramlist
s_symbolic_kn

/* for SKW_FTREE_REPEAT */
s_save_last_in_map
s_save_lastnode

system_infoT

Attribute:
i_name
i_dist_type=DT_
NO_DIST
i_transferred_to=
true
i_entry

node_infoT

��
��
��Attribute:

i_name
i_dist_type=DT_
NO_DIST
i_entry=NT_MIN
| NT_MAX |
NT_KOFN |
NT_NMIN |
NT_NMAX |
NT_NKOFN|
NT_NOT

��node_infoT ......

i_
su

cc

Attribute:
n_id

nodeT

Attribute:

udistT

s_node_info

��
��
��Attribute:

i_name
i_dist_type=DT_
NO_DIST
i_entry=NT_TRA
NSFER

��node_infoT

��
��
��Attribute:

i_name
i_dist_type
i_entry=NT_REP
EAT | NT_LEAF

��node_infoT

i_transfer_index

Attribute:

nodeT
s_map

Attribute:

nodeT

......
n_next

s_last_in_map

n_
id

......

i_
ud

is
t

n_
ne

xt

Attribute:
n_id

nodeT

n_
ne

xt

...... �
�
�
�

parallel | series | and | or |
kofn | nand | nor

transfer name name

basic | repeat | comp | not
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System - Reliability Graphs

Attribute:
s_name
s_type =
SKW_MARKOV |
SKW_SEMIMARK |
SKW_RELGRAPH |
SKW_PFQN |
SKW_MPFQN
s_paramlist

system_infoT

Attribute:

wordT

Attribute:

wordT

Attribute:

wordT

......
eg_1

Attribute:

edgeT

Attribute:

edgeT

Attribute:
eg_dist_type

edgeT

......

Attribute:

wordT

Attribute:
eg_dist_type
eg_isRepeat ==
true

edgeT

s_lastedge

s_edges

eg
_2

s_names

Attribute:

udistT

eg_udist

Attribute:

nodeT

Attribute:

nodeT

......
n_next Attribute:

nodeT

n_next Attribute:

nodeT

n_next

s_last_in_map

s_map

n_
id

n_
id

n_
id

n_
id

eg_udist

eg_repeat
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System - Markov Chain*| Semi Markov Chain | PFQN* |
MPFQN*

* means basic or partial data structure

Attribute:
s_name
s_type =
SKW_MARKOV |
SKW_SEMIMARK |
SKW_PFQN |
SKW_MPFQN
s_paramlist

system_infoT

Attribute:

wordT

Attribute:

wordT

Attribute:

wordT

......

eg_1

Attribute:

edgeT

Attribute:

edgeT

Attribute:
eg_dist_type

edgeT

......

Attribute:

wordT

Attribute:

edgeT

s_lastedge

s_edges

eg
_2

s_names

eg
_s

ym
ra

te

Attribute:

eeT

Attribute:

udistT

eg_udist

Attribute:
ee_type =
ET_EXPRESSIO
N

eeT ee_nextarg

Attribute:
ee_type =
ET_EXPRESSIO
N

eeT

Attribute:
ne_type =
ET_EXPRESSIO
N

name_exprT

ee_info.comp_name

Attribute:
ne_type =
ET_NODE
ne_info.ne_chars

name_exprT

ee_info.comp_name

ee
_n

ex
t

Attribute:
ee_type

eeT

Attribute:
ee_type =
ET_EXPRESSIO
N

eeTee_nextarg

s_nodes

Markov only:
$(i) node2 expression

ee
_n

ex
t

Attribute:
ee_type =
ET_EXPRESSIO
N

eeTne_info.ne_expr

i

node2

expression

for Markov | PFQN | MPFQN for  SemiMarkov
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System - Loop in Markov Chain

Attribute:
s_name
s_type =
SKW_MARKOV
s_paramlist

system_infoT
s_loop_nodes

Attribute:
ee_type=
ET_LOOP_MAR
KOV_EDGE

eeT

......
ee_nextarg

Attribute:
ee_type=ET_PAR
AMETER
ee_info.param

eeT

Attribute:
ee_type=
ET_LOOP_MAR
KOV_EDGE

eeT
ee_nextarg

Attributes:
ee_next

eeT

Attribute:
ee_next

eeT

Attribute:
ee_next

eeTee_nextarg ee_nextarg ee_nextarg

ee_firstarg

Attribute:
ee_type=
ET_MARKOV_E
DGE

eeT

Attribute:
ee_type=
ET_MARKOV_E
DGE

eeT

Attribute:
ee_next

eeT

ee_nextarg

ee_next ee_next

Attribute:
ee_type=
ET_MARKOV_E
DGE |
ET_LOOP_MAR
KOV_EDGE

eeT

ee_nextarg

ee_nextarg

......

Attribute:
ee_type=
ET_LOOP_MAR
KOV_PROB |
ET_LOOP_MAR
KOV_RATE

eeT

s_loop_probs
OR
s_loop_rewards

Attribute:
ee_type=
ET_LOOP_INIT_
PROB |
ET_LOOP_REW
ARD_RATE

eeT

ee
_n

ex
ta

rg
ee

_n
ex

ta
rg

......

Attribute:
ee_type=ET_PAR
AMETER
ee_info.param

eeT

Attributes:
ee_next

eeT

Attribute:
ee_next

eeT

Attribute:
ee_next

eeTee_nextarg ee_nextarg ee_nextarg

Attribute:
ee_type=
ET_INIT_PROB
|
ET_REWARD_R
ATE

eeT

Attribute:
ee_next

eeT

ee_nextarg

ee_nextee_nextarg

......

ee_firstarg
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System - Fast MTTF in Markov Chain| Semi-Markov

Attribute:
s_name
s_type =
SKW_MARKOV |
SKW_SEMIMARK |
s_paramlist
s_mttf

system_infoT

Attribute:
ee_type =
ET_EXPRESSIO
N

eeT ee_nextarg

Attribute:
ee_type =
ET_EXPRESSIO
N

eeTee_nextarg

s_setA

Attribute:
ee_type =
ET_EXPRESSIO
N

eeT ee_nextarg

Attribute:
ee_type =
ET_EXPRESSIO
N

eeTee_nextarg

s_setF
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System - PFQN after mtopsort()

Attribute:
s_name
s_type = SKW_PFQN
s_paramlist

system_infoT

Attribute:
i_name

mnode_infoT
s_mnode_info

Attribute:
i_name

mnode_infoT

Attribute:
i_name

mnode_infoT

......

Attribute:
st_type
st_service_rate

stn_infoT

i_station_info

Attribute:
ee_next

eeT

st
_s

ym
_s

er
vi

ce
_r

at
e

Attribute:
ee_next

eeT

Attribute:
ee_next

eeTee_nextarg ee_nextarg ee_nextarg

......

for LDS (Load Dependent Server)

Attribute:
ee_next

eeT
st_sym_noof_servers

for a multiple server station, # of servers

s_lastnode
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i_mstation_info

System - MPFQN after mtopsort()

Attribute:
s_name
s_type = SKW_MPFQN
s_paramlist
s_no_of_stations

system_infoT

Attribute:
ch_edges

chain_infoT

s_
ch

ai
n_

in
fo

......

Attribute:
i_name

mnode_infoT

ch
_mnode_info

Attribute:
i_name

mnode_infoT

Attribute:
i_name

mnode_infoT

......

ch_lastnode

Attribute:
i_name

mnode_infoT

ch
_mnode_info

Attribute:
i_name

mnode_infoT

Attribute:
i_name

mnode_infoT

......

ch_lastnode

Attribute:
ee_next

eeT

ch_sym_noof_custs_qn

Attribute:
ee_next

eeT

ch_sym_noof_custs_qn

Attribute:
st_type

mstn_infoT

i_mstation_info

Attribute:

eeP

Attribute:

eeP

Attribute:

eeP

Attribute:

eeP

......

st_sym_service_rate

s_no_of_chains

s_
no

_o
f_

ch
ai

n

s_stn_list

st
_n

ex
t

Attribute:
st_type

mstn_infoT st_next

......

Attribute:
ch_edges

chain_infoT

Attribute:
ch_edges

chain_infoT

Attribute:
ch_edges

chain_infoT

Attribute:
ch_edges

chain_infoT

Attribute:
ch_edges

chain_infoT

Attribute:
ch_edges

chain_infoT

157



s_firsttrans

System - GSPN | SRN

system_infoP system_info

Attribute:
place_name

place_infoT

Attribute:
place_name

place_infoT

Attribute:
place_name

place_infoT

Attribute:
place_name
init_token

place_infoT

Attribute:
place_name

place_infoT

Attribute:
place_name

place_infoT

......

nu
m

_p
la

ce
s

place_intoP place_info

Attribute:
trans_name
trans_type
place_index
dependent

trans_infoT

Attribute:
trans_name
trans_type
place_index
dependent

trans_infoT

Attribute:
trans_name
trans_type
place_index
dependent

trans_infoT

Attribute:
trans_name
trans_type
trans_rate_or
_prob

trans_infoT

Attribute:
trans_name
trans_type
place_index
dependent

trans_infoT

Attribute:
trans_name
trans_type
place_index
dependent

trans_infoT

......

nu
m

_t
ra

ns

trans_intoP trans_info

sym_init_tokens

Attribute:

eeT

sy
m_tr

an
s_

or
_p

ro
b

Attribute:

eeT

Attribute:
s_name
s_type = SKW_GSPN |
SKW_SRN
s_paramlist

system_infoT

s_lasttrans

s_
fi

rs
tp

la
ce

s_lastplace
in

pu
t_

ar
cs

ou
tp

ut
_a

rc
s

in
hi

b_
ar

cs

Attribute:
place_index
multiplicity

arcPN

Attribute:

eeT
sy

m
_m

ulti
plic

ity

Attribute:
place_index
multiplicity

arcPN

...
...

...
...

......
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System - PMS

Attribute:
s_name
s_type = SKW_PMS
s_paramlist
s_symbolic_kn
s_tbound

system_infoT

Attribute:

pms_infoT

s_pms_info

Attribute:

pms_nodeT

Attribute:

pms_nodeT

Attribute:

pms_nodeT

Attribute:

pms_nodeT

Attribute:

pms_nodeT

......

nphase tnphase

phaselist

sys_index

Attribute:
s_coherent != false
s_paramlist != P_NULL

system_infoT

Attribute:

eeT

sym_duration

Attribute:

pms_nodeT

......

0 1 2 3 99

MAX_PHASE_NUM=100
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Appendix B

SHARPE GUI Documentation

This appendix is a partial SHARPE GUI document. The first page is the object model [13]

of the GUI program. The second is the window layout of the main window. The third is

the object model of the analysis window. The last is the window layout of the analysis

window.
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Appendix C

SHARPE Examples

Here, more SHARPE examples are listed.

C.1 Fault Tree Examples

C.1.1 SHARPE File — ftree n=example12

�Example 12

�Author Luo Tong

�To test the MVI in fault tree with inverse gates

� TEST KEY sysunrel: 3.0000e�01

� version using only repeated components

ftree ft

repeat a prob(0.3)

repeat b prob(0.4)

basic c prob(0.8)

and d a b

nand f a d

or e d b

or g f e

and h a g

nor i g c

or z h i

end

var sysunrel pzero(ft)
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expr sysunrel

end

C.1.2 SHARPE File — ftree n=xnkofn1

ftree kn1

repeat r exp(3.2)

basic a exp(7)

basic b exp(4)

basic c exp(5)

basic d exp(11)

kofn abcd 2,4, a b c d

not nabcd abcd

and top nabcd r

end

ftree kn2

repeat r exp(3.2)

basic a exp(7)

basic b exp(4)

basic c exp(5)

basic d exp(11)

nkofn abcd 2,4, a b c d

and top abcd r

end

cdf(kn1)

cdf(kn2)

end
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C.1.3 SHARPE File — ftreebdd1=mincut

ftree dsp70

basic a prob(q)

basic b prob(q)

basic c prob(q)

basic d prob(q1)

or t3 a b

and t1 t3 d

transfer d1 d

and t2 c d1

or t0 t1 t2

end

bind

q 0.25

q1 0.30

end

mincuts(dsp70)

expr sysprob(dsp70)

ftree f long

basic a0123456789012345678901234567890123456789 exp(3.1)

basic b exp(4.2)

basic c exp(3.7)

basic d exp(7.2)

basic e exp(2)

basic f exp(1.2)

basic g exp(0.8)

basic x exp(3)

basic y exp(4)
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transfer e1 e

or BE b e

and A a0123456789012345678901234567890123456789 BE

kofn K1 1,3, a0123456789012345678901234567890123456789 x y

kofn K2 2,4, g c d a0123456789012345678901234567890123456789

or EG e1 g

or FC f c

and E EG FC

or top A K1 K2 E

end

mincuts(f long)

expr mean(f long)

ftree f repeat (k1,k2)

basic a exp(3.1)

basic b exp(4.2)

basic c exp(3.7)

basic d exp(7.2)

basic e exp(2)

basic f exp(1.2)

basic g exp(0.8)

basic x exp(3)

basic y exp(4)

transfer e1 e

or BE b e

and A a BE

kofn K1 k1,3, a x y

kofn K2 k2,4, g c d a

or EG e1 g

or FC f c
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and E EG FC

or top A K1 K2 E

end

mincuts(f repeat;1,2)

expr mean(f repeat;1,2)

end

C.1.4 SHARPE File — ftree bdd2=impt

verbose on

ftree tree0(x)

repeat c1 exp(0.1)

basic c2 exp(0.2)

basic c3 exp(x)

basic c4 exp(0.1)

and and1 c1 c2

and and2 c3 c4

or top and1 and2

end

bdd off

cdf(tree0;0.3)

bdd on

expr bimpt(2; tree0, c1;0.3)

expr bimpt(2; tree0, c1;0.2)

expr bimpt(2; tree0, c1;0.1)

expr bimpt(2; tree0, c1;0.3)

expr cimpt(2; tree0, c1;0.3)
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expr simpt(tree0, c1;0.3)

cdf(tree0;0.3)

end

C.2 Examples of Reliability Graphs

C.2.1 SHARPE File — relgraphbdd2=mincuts

relgraph bridge

1 2 exp(1)

1 3 exp(2)

2 3 exp(3)

3 2 exp(2.3)

2 4 exp(4.7)

3 4 exp(5)

end

mincuts(bridge)

end

C.2.2 SHARPE File — relgraph=minpath

bdd off

relgraph bridge0

1 2 prob(q)

1 3 prob(q)

2 3 prob(q)
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3 2 prob(q)

2 4 prob(q)

3 4 prob(q)

end

bind

q 0.1

end

minpaths(bridge0)

expr 1�sysprob(bridge0)

end

C.2.3 SHARPE File — relgraphbdd2=reltest1

format 8

relgraph bridge0

1 2 prob(q1)

2 4 prob(q2)

1 3 prob(q1)

3 4 prob(q2)

bidirect

2 3 prob(q3)

end

bind

q1 0.01

q2 0.015

q3 0.02
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end

expr sysprob(bridge0)

expr simpt(bridge0, 3, 4)

expr simpt(bridge0, 1, 2)

expr simpt(bridge0, 2, 4)

expr simpt(bridge0, 2, 3)

expr simpt(bridge0, 3, 2)

expr bimpt(10; bridge0, 3, 4)

expr cimpt(10; bridge0, 3, 4)

end

C.3 Examples of Fast MTTF [6]

C.3.1 SHARPE File (Markov Chain) — fastmttf=m6

format 8

bind lambda 0.1

bind mu 1

markov t2 readprobs

6 0 5 1 6�lambda

5 1 5 0 1�lambda

5 1 4 2 5�lambda

5 0 4 1 5�lambda

5 0 6 0 mu

4 2 3 3 4�lambda

4 2 4 1 2�lambda
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4 1 3 2 4�lambda

4 1 4 0 1�lambda

4 1 5 1 mu

4 0 3 1 4�lambda

4 0 5 0 mu

3 3 2 4 3�lambda

3 3 3 2 3�lambda

3 2 2 3 3�lambda

3 2 3 1 2�lambda

3 2 4 2 mu

3 1 2 2 3�lambda

3 1 3 0 1�lambda

3 1 4 1 mu

3 0 2 1 3�lambda

3 0 4 0 mu

2 4 1 5 2�lambda

2 4 2 3 4�lambda

2 3 1 4 2�lambda

2 3 2 2 3�lambda

2 3 3 3 mu

2 2 1 3 2�lambda

2 2 2 1 2�lambda

2 2 3 2 mu
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2 1 1 2 2�lambda

2 1 2 0 1�lambda

2 1 3 1 mu

2 0 1 1 2�lambda

2 0 3 0 mu

1 5 0 6 1�lambda

1 5 1 4 5�lambda

1 4 0 5 1�lambda

1 4 1 3 4�lambda

1 4 2 4 mu

1 3 0 4 1�lambda

1 3 1 2 3�lambda

1 3 2 3 mu

1 2 0 3 1�lambda

1 2 1 1 2�lambda

1 2 2 2 mu

1 1 0 2 1�lambda

1 1 1 0 1�lambda

1 1 2 1 mu

1 0 0 1 1�lambda

1 0 2 0 mu

0 6 0 5 6�lambda

0 5 0 4 5�lambda

0 5 1 5 mu

174



0 4 0 3 4�lambda

0 4 1 4 mu

0 3 0 2 3�lambda

0 3 1 3 mu

0 2 0 1 2�lambda

0 2 1 2 mu

0 1 1 1 mu

0 1 0 0 1�lambda

0 0 1 0 mu

end

6 0 1

end

fastmttf

6 0 READA

2 4 READA

�3 3 READA

0 0 READF

end

expr fastmttf(t2)

end

C.3.2 SHARPE File (Semi-Markov Chain) — fastmttf=semit

semimark abc2
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m1 m2 exp(1.2)

m2 m3 exp(0.8)

m1 m3 exp(1.4)

m2 m1 exp(0.3)

m3 m1 exp(1.5)

m3 m4 exp(2.5)

m4 m1 exp(1.0)

end

m1 1

end

fastmttf

m1 READA

m2 READA

m3 READF

end

expr fastmttf(abc2)

end

C.4 SRN Example

C.4.1 SHARPE File — srn=mtta

� Translate from sensi.c of SPNP6

format 8

bind

thinktime 1

CPUrate 0.01
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rate1 0.04

rate2 0.05

TK 2

exit prob 0.01

out1 prob 0.30

out2 prob 0.69

lambda 1.0/CPUrate

theta 1.0

end

srn mttatest()

� Places

think 0

CPU TK

decide 0

use1 0

use2 0

end

� Timed transitions

go placedep think 1.0/thinktime

CPUdone ind lambda

done1 ind 1.0/rate1�theta

done2 ind 1.0/rate2�theta

end

� Immediate transitions

exit1 ind exit prob

out1 ind out1 prob

out2 ind out2 prob

end

� Input arcs

think go 1

CPU CPUdone 1
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decide exit1 1

decide out1 1

decide out2 1

use1 done1 1

use2 done2 1

end

� Output arcs

go CPU 1

CPUdone decide 1

exit1 think 1

out1 use1 1

out2 use2 1

done1 CPU 1

done2 CPU 1

end

� Inhibitor arcs

think go TK

end

func refunc()

if (#(think) == TK)

0

else

1

end

end

expr srn cexrinf(mttatest; refunc)

expr mtta(mttatest)

end
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