THE RECONSTRUCTION OF SHARPE

by
Hu Pan
Department of Computer Science
Duke University
Date:
Approved:

Dr. Kishor S. Trivedi, Supervisor

Dr. Alvin R. Lebeck

Dr. Robert A. Wagner

A thesis submitted in partial fulfillment of the
reguirements for the degree of Master of Science
in the Department of Computer Science
in the Graduate School of
Duke University

February 14, 2001

Contents

1

2

Introduction

1.1 Symbolic Hierarchical Automated Reliability and Performance Evalua-
tor(SHARPE) e

12 Toolsused
121 GCC . . e
122 flex . ..
123 BisON

1.3 Workof reconstruction oo

14 Scopeofthethesis

New Model Type in SHARPE - Stochastic Reward Nets (SRNSs)

21 Background
2.1.1 Petri Nets (PNs) and Generalized Stochastic Petri Nets (GSPNs) .
212 StochasticRewardNets(SRNS)

22 Howtosolve

23 Implementation
231 SyntaxforSRNs
2.32 New built-infunctions
233 Syntaxextensions.

24 SRNExamples
24.1 Two workstations, onefileserver system
242 Molloy'sexample.

24.3 Software Performance Analysis

244 M/M/mj/bqueue 36

245 C.mmp system performability analysis 40
2.4.6 Database system availabilityanalysis 46
247 ATM network underoverload 53
2.4.8 Criticality Importance and Birnbaum Importance 60
2.4.9 Channel recovery schemeinacellular network 65
2410 Testingwhilestatement. 71
3 Model Types Integrated 74
31 Phased-MissonSystems(PMS) 74
3.1.1 Specificationof model 74
312 Systemandysisfunction 75
313 Examples 75
32 MultistateFault Trees 85
3.21 Specificationof model L 85
322 Systemandysisfunctions 86
323 Examples 87
3.3 Markov Regenerative Process[17] 95
3.3.1 Specificationof model L. 95
33.2 Systemandysisfunctions 96

3.3.3 Example—Cellular Networkswith Generally Distributed Hand-off
Traffic. 96
34 RdiabilityBlockDiagrams 101
341 Specificationof model [14] L. 101
34.2 Example—2 Processors, 3 MemoriesSystem 102

35

3.6

3.7

3.8

3.9

3.10

311

35.1 Specificationof model oL 104
35.2 Systemanalysisfunctions 107
3.5.3 Example—2 Processors, 3 MemoriesSystem 108
Reliability Graphs 110
3.6.1 Specificationof model 110
36.2 Systemandysisfunctions 111
363 Examples 112
Series-parallel AcyclicDirectedGraphs 115
3.7.1 Specificationof model L 115
3.7.2 Example—A CPU-Input/Output Overlap System 117
Single-chain Product-form Queueing Networks 120
3.8.1 Specificationof model L. 120
3.8.2 Example — a Terminal-oriented System with a Limited Number

of Memory Partitions[16] 122
Multiple-chain Product-form Queueing Networks 124
39.1 Specificationof model L 124
3.9.2 Example — a Terminal-oriented System with a Limited Number

of Memory Partitions[16] 125
Markov Chains 127
3.10.1 Specificationof model L 127
3.10.2 Example—ErlangLossModel 129
Semi-Markov Chains 134
3.11.1 Specificationof model 134
3112 Example—Figure3.22 135

3.12 Generalized Stochastic Petri Nets. 136
3.12.1 Specificationof model 136

3.12.2 Example— M/M/1/K Queue with Server Failure and Repair . . 137

A SHARPE Data Structure 140
B SHARPE GUI Documentation 160
C SHARPE Examples 165
Cl FaultTreeExamples i 165
C.11 SHARPEFile—ftreen/examplel2 165

C.12 SHARPEFile—ftreen/xnkofnl 166

C.1.3 SHARPE File— ftreebddl/mincut 167

C.14 SHARPE File—ftreebdd2/impt 169

C.2 Examplesof ReliabilityGraphs. 170
C.21 SHARPE File—relgraphbdd2/mincuts. 170

C.22 SHARPE File—relgraph/minpath 170

C.23 SHARPE File—relgraphbdd2/reltestl 171

C.3 Examplesof FastMTTE[6] . . . o v oo e 172
C.3.1 SHARPE File (Markov Chain) — fastmttf/m6 172

C.3.2 SHARPE File (Semi-Markov Chain) — fastmttf/semit 175

C4 SRNExample 176
C41 SHARPEFile—sn/mita 176
Bibliography 179

Chapter 1

Introduction

1.1 Symbolic Hierarchical Automated Reliability and Per-
formance Evaluator(SHARPE)

Today’s computer system design has become more and more complicated, so it is hard
to predict the reliability, availability and serviceability characteristics of the resulting sys-
tem. Also, it is too expensive and time-consuming to build even one prototype to take
measurements. Even when that is not the case, if the model is a good match for the sys-
tem, designers can more easily and quickly carry out trade-off studies, and compare design

alternatives.

Generally, there are two kinds of models, discrete-event simulation modelsand analytic
models, to help designers predict system behavior without having to build and measure a
real system. For discrete-event simulation models, designers build a program to repro-
duce the running behavior of the modeled system and take measures of the behavior. On
the other hand, for analytic models, designers use a set of formulas or equations to de-
scribe the system. By solving these equations, designers get the measures of the system.
Although discrete-event simulation models provide more details of the system behavior,
they consume more time and more computer resources than analytic models. The situation
may become worse when designers want to vary many of the parameters of the system for
many times. Analytic models are better abstractions of systems. But analysts have to be

very careful on how to abstract these real-world systems.

SHARPE (Symbolic Hierarchical Automated Reliability and Performance Evaluator)

1

is a software tool that analyzes a specific class of analytic models — stochastic models. It
accepts a specification language, called SHARPE language, for building single or hierar-
chical combinations of analytic models and for choosing proper algorithms for analyzing

them. Originally, SHARPE provided analysis algorithmsfor the following model types:

e Reliability block diagrams

e Fault trees

e Reliability graphs

e Series-paralel acyclic directed graphs

e Single-chain and multiple-chain product-form gueueing networks
e Markov and semi-Markov chains

o Generdlize Stochastic Petri nets

SHARPE language gives users the power to choose models that are a proper match
of the problem under investigation and it is up to users to interpret the parameters of the
system and the results of measurements in a meaningful way. So, users can freely deploy
al the above models on any systems if necessary. In the SHARPE test-bed, different
system examples, such as multiprocessor system, wireless system, software system, and
token ring system, etc., are included. Another big plus for SHARPE is that it supports
hierarchical modeling, which can solve very complicated systemswithout causing stiffness

or largeness.

Programming of SHARPE began in the early 1980s, in C language. The first version
appeared at 1986. At that time, computer world was still lacking the ideas of compiling

tools such as lex and yacc. As time passed, more and more models have been added into

2

SHARPE which has gradually made the code, especially the language parsing part, difficult
to manage. It has become more and more difficult to add new model typesinto SHARPE or
to extend the SHARPE language syntax. So, flex — an advanced version of lex, and Bison
— an advanced version of yacc have been used to reconstruct SHARPE. The C language
compiler used is GCC. Introduction to flex, Bison and GCC is given at the section 1.2.

Details of work that has been donein this project are listed at the section 1.3.

1.2 Tools used

1.2.1 GCC

GCC stands for "GNU Compiler Collection”, where GNU was chosen following a hacker
tradition, as a recursive acronym for "GNU’s Not Unix”. GCC can compile programs
written in C, C++, Objective C, Fortran, Java and CHILL. The main goal of GCC was
to provide a good, fast compiler for computer platformsin the class that the GNU system
aims to run on: 32-bit machines with 8-bit addresses bytes and several general registers,
include Al X, DOS, HP-UX, SCO OpenServer/Unixware, Solaris (SPARC, Intel), SGI, and
Windows 95, 98, NT, 2000. So, having been compiled successfully by GCC, SHARPE

can easily be deployed on those popular platforms.

1.2.2 flex

flex, aso from GNU, is a tool for generating lexical scanners, which are programs for
recognizing lexical patterns in text. At first, flex reads a description of a lexical scanner
from the given input files, or its standard input if no file names are given. The description
isin the form of pairs of regular expressions and C code, called rules. According to the

description, flex generatesa C sourcefile, 'lex.yy.c’, which definesaroutine’yylex()’. This

3

file should be compiled and linked with the ’-Ifl’ library to produce an executable. When
the executable is running, it analyzes its input for occurrences of the regular expressions.

Whenever it finds one, it executes the corresponding C code.
The flex input file consists of four sections, separated by aline with just '%%’ init:
%{
C declarations
%}
definitions
%%
rules
%%
Additional C code

The C declarations section may define types and variables used in the actions. One
can also use preprocessor commands to define macros, and use #include to include header

files that do any of these things.

The definitions section contains declarations of simple name definitionsto simplify the
scanner specification, and declarations of start conditions, which supports conditionally

activating rules.
The rules section of the flex input contains a series of rules of the form:

pattern action

where the pattern must be un-indented, which is written using an extended set of regular

4

expressions, and the action must begin on the same line, which can be any arbitrary C

statement.
The additional C code section can contain any C code one wants to use.

The reason to choose flex rather than lex is that lex cannot handle languages, such as

SHARPE language, having too many tokens.

1.2.3 Bison

Bison, as a GNU tool, is a general-purpose parser generator that converts a grammar de-
scription for an LALR context-free grammar into a C program to parse that grammar. It
is upward compatible with Yacc: all properly-written Yacc grammars ought to work with
Bison without change. Bison reads a Bison grammar file asinput. The output isa C source
file defining a function named yyparse, and thefileis called a Bison parser. The job of the
Bison parser isto group tokens into sets according to the grammar rules —for example, to
group identifiers and operations into expressions. when it does this, it runs the actions for
the grammar rules. The tokens come from a function called the lexical scanner, which, in

this project, is the function yylex generated by flex.
The general form of a Bison grammar file isas follows:
%{
C declarations
%}
Bison declarations

%%

Grammar rules
%%
Additional C code

The C declarations may define types and variables used in the rules’ actions. You can
also use preprocessor commands to define macros used there, and use #include to include

header files that do any of these things.

The Bison declarations declare the names of the terminal and non-terminal symbols,
and may also describe operator precedence and the data types of semantic values of various

symbols.

The grammar rules define how to construct each non-terminal symbol from its parts.

The following rule defines a non-terminal line as newline character:

line: "\n’

The additional C code can contain any C code one wants to use.

1.3 Work of reconstruction

The programming of SHARPE began in the early 1980s, in C language. First version was
released at 1986. At that time, computer world was still lacking of the ideas of compiling
tools such as lex and yacc. As time passed, more and more models have been added
into SHARPE which has gradually made the code, especially the language parsing part,
difficult to manage. It has become more and more difficult to add new model types into

SHARPE. So, flex — an advanced version of lex, and Bison — an advanced version of yacc

6

have been used to reconstruct SHARPE (See Figure 1.1). Of course, the new version of
SHARPE, which is backward compatible to the old version, supports old language syntax
and all model types listed in section 1.1, Phased-mission systems, Multi-state fault trees,
and repeated edgesin reliability graphsfrom Xinyu Zang' swork [18], Markov regenerative
process from Wei Xie'swork [17], and Stochastic Reward Nets, which isimplemented by
me. There is aso fast Mean Time To Failure(MTTF) algorithm for Markov chains and
semi-Markov chains[6], which isimplemented by Wel Xie. All new changesto SHARPE

are represented by rectangles with thick linesin Figure 1.1.

The only exception isthe definition of aname. Now only any number of |etters, digits,
underline, and colon are used to define a name. Names can be any length, but SHARPE
only looks at the first 29 characters, beyond that, SHARPE will ignore and provide a

warning message to users.

Another extension to SHARPE language syntax is that numbers can be represented in
scientific format so that 0.1 can bewrittenas1.0F — 1, which can ease the burden on users

when coding their SHARPE input files.

(Lexical Rules) (Grammar Rules)

Parsed by flex Par sed by bison

p
~ ™)
[yylex()) (yypar s&() j
C codefor the new parser of SHARPE with
L syntax extensions
-
C codefor newly integrated model types and features:
Phased-mission systems, multi-state fault trees,
markov regenerative process, repeated edgein
reliability graphs
-
C codefor newly implemented model type:
stochastic reward net
.
C codefor old model types
New SHARPE Source Code
-

Figure 1.1: New SHARPE Construct

Other extensionsto SHARPE language syntax will be mentioned when specific model

types are introduced in subsequent chapters.

The new version of SHARPE accepts the following model types:

¢ Reliability block diagrams

e Fault trees

e Phased-mission systems

e Multi-state fault trees

¢ Reliability graphs with possibly repeated edges

e Series-parallel acyclic directed graphs

e Single-chain and multiple-chain product-form queueing networks
e Markov and semi-Markov chains

e Markov Regenerative Process

e Generalize Stochastic Petri nets

e Stochastic Reward Nets

There is also atest-bed which contains 41 directories and 978 test cases. The correctness

of the new version of SHARPE is based on these test cases.

1.4 Scopeof thethesis

The remainder of thisthesisis organized into 2 chapters, as follows. Chapter 2 introduces
how Stochastic Reward Nets (SRNs) has been implemented in SHARPE. Chapter 3 intro-
9

duces all the model types which have been integrated into the new version of SHARPE.
Examples have been selected to excise the features introduced. Appendix A includes all
important data structures in SHARPE. Appendix B includes a partial SHARPE GUI doc-

ument. Appendix C' includes extra examples referenced in this thesis.

10

Chapter 2

New Model Typein SHARPE — Stochastic
Reward Nets (SRNSs)

2.1 Background

2.1.1 Petri Nets(PNs) and Generalized Stochastic Petri Nets (GSPNS)

Petri nets (PNs) were introduced by C.A. Petri in 1962 [12]. As a a bipartite directed
graph, a PN consists two types of nodes: places, P, and transitions, 7'. Its directed arcs
fall intwo categories: input arcs, which lead from an input place to atransition, and output
arcs, which connect a transition to an output place. Arcs cannot connect the same type
of nodes, such as from places to places or from transitions to transitions. A non-negative
number of tokens can be assigned to each place. A marking m € M is defined as a
possible distribution of tokens to all places in the PN. Let P denotes the set of places.
Then a marking m represents a multi-set, m € M c IZN7I, describing the number of
tokens in each place. See Figure 2.1. We use circle to denote a place, and a rectangle
or a bar to denote atransition. Places represent conditions in the system being modeled.
Transitions represent events occurring in the system. Input arcs are directed arcs from
places to transitions representing the requirement or conditions for the event, which is
denoted by the transition, to be triggered; output arcs are directed arcs from transitions to
places representing the state or condition resulting from the occurrence of an event; input
places of atransition are the set of places that are connected to the transition through input

arcs; output places of atransition are the set of places to which output arcs exist from the

11

transition.

input place transition output place
y v v
L@ l
token Q 4 | ® Q
input arc ’ " output arc

Figure 2.1: Basic components of a Petri net

A transitionis enabled in the PN if the conditions for the corresponding event are met,
which means al of the transition’s input places contain at least one token. A transition is
always enabled if there is no input arc connected to it. In the situation when more than
one transitions is enabled, priority may be introduced to resolve the conflict (see Chapter
2.1.2). When an enabled transition fires, one token from each input place is removed and
one token is added to each output place (See Figure 2.2). The firing of a transition may
transform a PN from one marking into another, changing the state or condition. Marking of
a Petri net is the distribution of tokens among the places of the net. Given an initial mark-
ing, the reachability set, RS, is defined as the set of markings reachable through any firing
sequences of transitions beginning from the initial marking (See Figure 2.2). A reacha-
bility graph is represented as a directed graph with markings as its nodes and marking-to-
marking transitions asits directed arcs. Depending on the situation, a’RS could beinfinite.

Markingsin which no transition is enabled are called absorhbing markings.

Arcs of PNs can be extended to define arc cardinality or multiplicity. A transition
is enabled when each input place connected to it contains at least as many tokens as the
cardinality of the input arc. When the transition fires, the number of tokens removed from

12

prup tﬂr fres ~ PYP fires

trep tfir trep tflr trep tflr

trep flres trep f/res
pran

Figure 2.2: Enabling and Firing of Transitions

tfir tflr

20 11 02
~ trep trep

Y
\

Figure 2.3: Reachability Set

the input place is the cardinality of the corresponding input arc, and the number of tokens

added into the output place is the cardinality of the corresponding output arc (See Figure

Further, inhibitor arcs are introduced as the third category of PN arcs. An inhibitor
arc is drawn from a place to transition. The place is called inhibitor place. Inhibitor arc
inhibits the firing of a transition when the corresponding inhibitor place has at least as
many tokens as the cardinality of the corresponding inhibitor arc, even under the situation
that all other conditionsfor enabling the transition are met. Inhibitor arcs are also directed

arcswith asmall circle rather than an arrow-head showing its direction (See Figure 2.4).

13

. inhibtor arc

O

AN

" multiplicity

Figure 2.4: Extension of GSPN 1

Another way of extending PNsisto assign time with the firing of transitions, resulting
intimed Petri nets. Generalized Stochastic Petri Nets (GSPNSs) are one of them. In GSPNs,
there are two types of transitions: timed transitions whose firing time is exponentially
distributed and immediate transitions whose firing time is constant zero. Timed transitions

are denoted by empty rectangles, while immediate transitions are drawn as bars.

The markings in the reachability set RS of a GSPN are partitioned into two sets: the
vanishing markings V and the tangible marking 7. So, M =V |J 7. Vanishing markings
are those in which at least one immediate transition is enabled. Since vanishing markings
are not resided in for any non-zero time and firings are acted instantaneously, the priority

of immediate transitions is always higher than that of timed transitions.

Since computers have limited resource, only bounded GSPNs, whose underlying reach-
ability sets are finite, are considered. Under the condition that only a positive number of
transitions can fire in afinite time with non-zero probability, there is exactly one Continu-

ous Time Markov Chain (CTMC) that corresponds to a given GSPN [10].

14

2.1.2 Stochastic Reward Nets (SRNs)

Stochastic Reward Nets (SRNs) are based on GSPN but extend them further [3]. Some of
the most prominent extensions are revisited in the following: priorities, guards, marking
dependent arc multiplicity, marking-dependent firing rates, and reward rates defined at the
net level.

Priorities. Asmentioned in the previous section, priority isimportant when more than
one transition is enabled at the same time. Although inhibitor arcs can be used to achieve
priority relationships, for the purpose of simplifying the model description, explicit priori-
ties can be assigned to transitions. Priorities are specified by assigning integer numbers to
transitions. A transition is enabled only if there is no other transition with a higher priority

enabled.

Guards. The guard functions are similar to the inhibitor arcs, but can use the entire
state of the net rather than just the number of tokensin places. They determine when tran-
sitions are to be enabled. This feature provides a powerful means to simplify the graphical
representation and to make SRNs easier to understand in a more general way compared to

the use of inhibitor arcs.

Marking-Dependent Arc Multiplicity: This feature provides a way to change the
structure of SRNs. For example, when a critical component of the system is down, the
system isdown. The way for usto represent the situation is to flush all places which have
number of tokens representing available resourcesin the system. The example showing the

use of thisfeatureisin the section 2.4.5.

Marking-Dependent Firing Rates: The firing rate of a transition may depend in a
rather general way based on the current marking of the net. Intheimplementation, there are

two ways. one way isto use rate functions, which are similar to guard functions and reward

15

rate functions; another way is to use the number of tokens in a chosen place multiplying
the basic rate of the transition, which is called place-dependent firing rate. For the first
situation, there is a SRN example of Markov Modulated Poisson Processes (MMPPs) [4]
intheright part of Figure 2.5. Thefiring rate of the transition 7'3 depends on whether there
isatoken in the place P1. When there is one and only one token in P1, the firing rate is

ap; Otherwise, itisay. Sincethereisan inhibitor arc from P1to 71, P1 can only have one

token at most.
Y01 Ti Pl T2
® o1 3 oy
()
a a,

Figure 2.5: Extension of GSPN 2

The left part of Figure 2.5 shows the corresponding CTMC which decides the firing

rate of the transition 7'3.

Reward Rate Specification: The basic output measures obtained from a SRN are the
throughput of a transition and the mean number of tokens in a place. But that’s far from
enough. Normally, more general information, such as the probability that a place is empty
while another oneisfull, or the sum of the number of tokensin aset of places, is hecessary.

Sinceitisat the net level rather than at the place level, reward rate functions are introduced.

Compared to GSPN, SRN provides more power and eases the work of translating real -
world systems into analytic models. That’s why SRN has been implemented in SHARPE.

16

2.2 Howtosolve

First, consider a computing system model (example 2.4.1) shown in Figure 2.8.

Next step, the SRN in Figure 2.8 is converted into the corresponding reachability graph.
Figure 2.6 shows the reachability graph. Notice that vanishing markings are shown as
dotted rectangle.

forp

00021

wsuc

Figure 2.6: The Reachability Graph for the system in Figure 2.8

Figure 2.7: CTMC after deleting vanishing markings from Figure 2.6

Assign rates and probabilities to each arc in the reachability graph, and eliminate all

17

vanishing markings. The corresponding Continuous Time Markov Chain is shown in Fig-
ure 2.7, where, respectively, \,, and \; are the failure rates of each workstation and thefile

server, and 4.,, and p; represent the repair rates of each workstation and the file server.

For transient analysis, randomization [15], sometimes called uniformization, is used to
solvethe problem. For steady-state analysis, Gauss-Seidel and Successive Over-Relaxation
are used.

2.3 I mplementation

2.3.1 Syntax for SRNs

The syntax for SRN modelsin SHARPE is as the following:

srn name {(param.list)}

* section 1: places and initial numbers of tokens

< place_name expression>

end

* section 2: timed transition names, types and rates

{

<transition_nameind expression {guar d expression } {priority expression} >
<transition_name placedep place_name expression {guar d expression } {priority
expression} >

<transition_name gendep expression {guard expression } {priority expres-
son} >

¥

end

* section 3: immediate transition names, types and weights

18

{

<transition_nameind expression{guard expression } {priority expression} >
<transition_name placedep place name expression{guar d expression } {priority
expression} >

<transition_name gendep expression {guard expression } {priority expres-
son} >

¥

end

* section 4: place-to-transition arcs and multiplicity

{ <place_name transition_name expression> }

end

* section 5: transition-to-place arcs and multiplicity

{ <transition_name place_name expression> }

end

% section 6: inhibitor arcs and multiplicity

{ <place_name transition_name expression> }

end

where, param.listis:

name, name, ..., name

name, trans_name and place_name are all symbols; expression is a mathematical expres-

sion that could contain function calls, ind means that the transition’s firing rate is not

dependent on the current marking of the net; placedep means that the transition’s firing

rate depends on the number of tokens in the specific place mentioned and the éxpression

assigned to it; and gendep means that the firing rate depends on the marking-dependent

function referenced in the corresponding expression.

19

2.3.2 New built-in functions

Marking-dependent and rate-dependent functions

The following functions are used only within reward functions, guard functions, rate func-

tions, and arc cardinality functionsfor SRN models.

e #(place_name)

Returns the number of tokensin a place with the given place_name.

e ?(trans_name)
Returns the boolean (true or false) value depending on whether the given transition
trans_nameis enabled.

e Rate(trans_name)

Returns the rate of the given transition trans_name; if disabled, return 0.

System analysisfunctions

In addition to the system analysis functions used for GSPN, three new system analysis

functions have been introduced to deal with the power of SRN models.

e srn_exrss(sys.name; reward_func_name{; arglist})

Calculates the steady-state expected value of the reward function reward_func_name.

e srn_exrt (t, sys_name; reward_func_name{;arglist})

Calculates the expected value of the reward function reward_func_name at time .

20

e srn_cexrt (t, sys name; reward_func_name{; arglist})
Calculates the cumulative expected value of the reward function reward_func_name
over theinterval (0, ¢].
e srn_ave cexrt (t, sys_name; reward_func_name{; arglist})
Calculatesthe average cumul ative expected val ue of the reward function reward_func_name
over theinterval (0, ¢].
e mtta (sys_name {; arglist})

Calculates the mean time to absorption for the SRN named sys_name. The function
should be used only when the underlying CTM C has absorbing states. (See example
C.4.1)

e srn_cexrinf (sys_name; reward_func_name{; arglist})

Calculates the cumulative expected value of the reward function reward_func_name
until absorption for the corresponding CTMC of the SRN system sys_name. The
CTMC must have absorbing states. (See example C.4.1)

where, arglist is

EXPression, expression, ..., EXpression

M athematical functions

All the following functions can be used within expressions, for al models including the

SRN model.

e acos (expression)

21

Calculates the arccosine.

asin (expression)

Calculates the arcsine.

atan (expression)

Calculates the arctangent.

ceil (expression)

Calculates the ceiling of avalue.

Cos (expression)

Calculates the cosine.

fabs (expression)

Calculates the absolute value.

floor (expression)

Calculates the floor of avalue.

In (expression)

Calculates natural logarithm.

max (expression, expression)

Compares two values and returns the larger one.
min (expression, expression)

Compares two values and returns the smaller one.
sin (expression)

Calculates sine.

22

e SOrt (expression)

Finds square root.

e tan (expression)

Calculates the tangent.

e weibull (expressionl, expression2, expression3)

_ empression16$p7‘esswn3

Calculates the Weibull distribution function 1 — e cwpression?

2.3.3 Syntax extensions

User defined function

Now, SHARPE supports either the old way of defining afunction:

func (param.list) expression

or the new way:
func (param.list)
< statement>
end
| f-statement has been added:
if bool _expression
< statement>
{ < elseif bool _expression

<statement> >}

23

{else
< statement> }

end

where statement can be
expression | bind var_name expression | epsilon epsilon_type expression | if statement

Detailed examples are provided in section 2.4.

Fixed point iteration

Suppose we have one SRN model M. Thefiring rate R, of atransition 77 isthe same as
the throughput of another transition 75 [5]. Since we don’t know the firing rate of 7, fixed
point iteration has to be used:

1. Set error bound e as a small real number, normally 1e — 7 in SHARPE.

2. Initialize thefiring rate RY of T to areasonable value.

3. Setk=1

4. Execute M;, compute the throughput 7°2,,,ougnput OF 5.

5. Set RY = T2 oughput-

6. If |[RF — R¥'|/RF™! < ¢, then stop, else set k = k + 1 and goto step 4.

Under a very general condition, the solution always exists, but the uniqueness of the

solution is not guaranteed [2]. However, in many of practical problems, result is often

unique, so the justification is enough for the practical use of fixed point iterations.

24

To support fixed point iteration, while-statement has been introduced:
while bool _expression
< statement>

end

where statement can be

expr expression{,expression ...} | bind var_name expression | epsilon epsilon_type

expression | if_statement | loop | while_statement

There is an example of fix-point iteration in section 2.4.9. Also, an example of while-

statement has been included in section 2.4.10.

2.4 SRN Examples

24.1 Twoworkstations, onefile server system

Description

A system contains 2 workstations and 1 file server (Figure 2.8) . Suppose the network is
fault-free, and the whole system is working as long as there is one workstation and the
file server is operational. So, the initial number of tokens in the place wsup is 2 and in
the place fsup is 1. Thefile server has higher repair priority than the two workstations(see
the inhibitor arc from the place fsdn to the transition wsrp in Figure 2.8). Also, when the
whole system is down, currently operational workstations or file server don’t go down any
more(see the inhibitor arcs from fsdn and wsdn to the transitions wsfl and fsrp in Figure
2.8). We adso have the assumption that, when a workstation fails, with probability ¢, the

failure is not detected, leading to the corruption and the failure of the file-server. That's

25

why we have immediate transitions wscv and wsuc.

WSFp

wsdn fsdn

Figure 2.8: Two workstation, one file server system with non-perfect failure detect

Features

¢ Reward function to compute expected val ues.

e Transient analysis

SHARPE File— srn/wfs.txt

format 8

func avail()
if (#(wsup) > 0) and (#(fsup) == 1))
1

26

else

end

end

srnwfs (C)
* Places
wsup 2
fsup 1
wst O
wsdn O
fsdn O
end

* Timed transitions

wsfl placedep wsup 0.0001

fsfl ind 0.00005

wsrp ind 1.0
fsrp ind 0.5
end

* Immediate transitions
wscv ind ¢
wsuc ind 1-c
end

* [nput arcs

wsup wsfl 1
fsup fsfl 1
fsup wsuc 1
wst wscvy 1
wst wsuc 1
wsdn wsrp 1

fsdn fsp 1

27

end

x Output arcs

wsfl wst 1

wsp wsup 1
fsfl fsdn 1

fsrp fsup 1

wscy wsdn 1
wsuc wsdn 1
wsuc fsdn 1
end

* |nhibitor arcs

fsdn wsfl 1
fsdn wsp 1
wsdn fsfl 2
end

* Obtain results
loopc, 0.7,0.9,0.1
loopt, 1, 10,1
expr srn_exrt(t, wfs; avail; c)
end
expr srn_exrt(20, wfs; avail;c)

end

end

28

System Availability for the 2 Workstations 1 file server model
T T T T

I
-©- ¢=0.9
\ —— ¢=0.8
\ *— ¢=0.7
0.99995 - \ B
\
\i
£0.99990 |-
£
«©
K
>
<C
€
£ —
& 0.99985 - B
~h—
.
0.99980 -
***‘u
0.99975 | L L . ! . ! | |
0 2 4 6 8 10 12 14 16 18 20

Time (hours)

Figure 2.9: Graph result for example 2.4.1

Theresult isshown graphically in Figure 2.9

24.2 Molloy’sexample

Source

M. K. Molloy, Performance Analysis Using Stochastic Petri Nets, IEEE Trans. Compuit.,
C-31(9), Sept. 1982, 913-917.

Description

The net is shown in Figure 2.10

29

t0
pl p2
t3
tl t2
p3 pd
t4

Figure 2.10: SRN for Example 2.4.2
Features
¢ Reward based functions to compute expected values.
e Default measures

e Steady-state analysis

SHARPE File— srn/exL.txt

echo M. K. Molloy, Performance Analysis Using Stochastic Petri Nets,
echo |EEE Trans. Comput., C—31(9), Sept. 1982, 931917

format 8

srn examplel()
po 1
pl O

30

p2 O
p3 O
p4 0O
end

t0 ind 1.0
t1 ind 3.0
t2 ind 7.0
t3 ind 9.0
t4 ind 5.0
end

end

po tO
pl t1
p2 t2
p3 t3
p3 t4
p4 t4

end

e = e

t0 p1
t0 p2
t1 p3
2 p4
3 pl

N e e

t4 po
end
end
* REWARD functions

func €ef0() #(p0)

func ef1l() #(pl)

func €ef2() Rate(t2)
func €ef3() Rate(t3)
func eff() Rate(tl)*1.8+#(p3)x0.7

x Obtain results
expr srn_exrss(examplel; ef0), srn_exrss(examplel; ef1), srn_exrss(examplel; ef2), srn exrss(examplel; ef3),

srn_exrss(examplel; eff)

end

2.4.3 Software Performance Analysis

Description

This example models the following piece of software:

A: Statements;
PARBEGIN
Bl: statements;
B2: IF (condl) THEN
C: statements;
ELSE
DO
D: statements;
WHILE (cond2) ;
END IF
PAREND

The corresponding SRN model is shownin Figure 2.11.

32

Figure2.11: SRN for Example 2.4.3

Features

e Probability and rate functions.
e Priorities for immediate transitions.
e Reward functions.

e Transient analysis with multiple time points.

SHARPE File— srn/ex2.txt

echo Software Performance Analysis
echo A: Statements,

echo PARBEGIN

echo B1: statements;

echo B2 IF(condl) THEN

echo C: statements;

33

echo ELSE

echo DO
echo D: statements;
echo WHILE (cond2);

echo END IF
echo PAREND

format 8

bind

rate0 1.0
ratel 0.3
prob2 0.4
prob3 0.6
rated 0.2
rae5 7.0
prob6 0.05
prob7 0.95
prob8 1.0

end

s ex2()

* Places

R
O O O O O o o O Bk

end
* Timed transitions

A ind rate0

Bl ind ratel

C ind raed

D ind rateb

end

* Immediate transitions
t2 ind prob2

t3 ind prob3

t6 ind prob6

t7 ind prob7

t8 ind prob8

end

* [nput arcs

PO A 1

P1 Bl 1

P3 t2
P3 t3
P4
P5
P7 16
P7 17
P2 t8

L S = T T o T T =N =Y

P6 t8
end

x Output arcs
A P1L 1
Bl P2 1
2 P4 1

t3 P5 1

C P61

35

D P7 1
6 P6 1
t7 PS5 1
A P31
t8 P8 1
end

* |nhibitor arcs

end

func rfunc() #(P8)

echo probability of completion

loop 1i,1,10

srn_exrt(i, ex2; rfunc)

end

loop i, 10, 20,2
srn_exrt(i, ex2; rfunc)

end

loop i, 20,50,5

srn_exrt(i, ex2; rfunc)

end

end

244 M/M/m/bqueue
Description

This example models a finite-buffer M /M /m /b queue shown in Figure 2.12. The corre-
sponding SRN is shown in Figure 2.13.

36

Transition

Rate Function

trin trserv

trserv

#(buf)pif (#(buf) < m)

m otherwise

Figure 2.13: SRN for Example 2.4.4

Features

¢ Both steady-state and transient analysis.
e Marking dependent firing rates.

e Reward functions.

SHARPE File— srn/ex3.txt

echo M/M/m/b queue model

format 8

bind
lambda 0.90
mu 0.10

«number of buffers

37

b 2
xnumber of servers
m 2

end

* RATE function
func rate_serv()
if (#(buf) < m)
#(buf)xmu

else

mxmu

end

end

srn example3()

* Places

buf 0

end

* Timed transitions

trin ind lambda
trserv gendep rate_serv()
end

* Immediate transitions
end

* [nput arcs

buf trserv 1

end
+ Output arcs
trin buf 1
end

* |nhibitor arcs

buf trin b

38

end

x REWARD functions
func glengthl() #(buf)

func utill() trserv)

func tputl() Rate(trserv)

func probre()
if (#(buf) ==b)
1

else

0

end

end

func probempty()
if (#(buf)==0)

1

else

0

end

end

func probhalffull()
if (#(buf) == b/2)

1

else

0

end

end

39

x Obtain results
expr srn_exrss(example3; glengthl), srn_exrss(example3; tputl), srn exrss(example3; util 1), srn exrss(example3;
probrej), srn_exrss(exampl €3; probempty), srn_exrss(example3; probhal ffull)

loopt, 0.1, 1.0,0.1

expr srn_exrt(t, example3; glengthl), srn_exrt(t, example3; tputl), srn exrt(t, example3; utill), srn exrt(t, ex-
ample3; probre)), srn_exrt(t, example3; probempty), srn _exrt(t, example3; probhal ffull)

end

loopt, 1.0, 10.0, 1.0

expr srn_exrt(t, example3; glengthl), srn_exrt(t, example3; tputl), srn exrt(t, example3; utill), srn exrt(t, ex-
ample3; probre), srn_exrt(t, example3; probempty), srn exrt(t, example3; probhal ffull)

end

end

245 C.mmp system performability analysis

Source

J. T. Blake, A. L. Reilbman and K. S. Trivedi, Sensitivity Analysis of Reliability and Per-
formability Measures for Multiprocessor Systems, Proc. 1988 ACM SGMETRICS, Santa
Fe, NM, 1988.

Description

This example models the C.mmp system designed at CMU. The architecture of the system
isshown in Figure 2.14. The corresponding SRN model is shown in Figure 2.15.

40

processors .
memories

ml

INTER

CONNECTION m?2

NETWORK

il

Figure 2.14: The C.mmp Architecture.

Features

Guard functions.

Variable multiplicity arcs.

Reward based measures.

Transient analysis.

SHARPE File— srn/ex4.txt

echo C.mmp system performability analysis

echo J.T. Blake, A.L. Reibman and K.S. Trivedi,

echo Sensitivity Analysis of Reliability and Performability
echo Measures for Multiprocessor Systems,

echo Proc. 1988 ACM SIGMETRICS, Santa Fe, NM, 1988

format 8

* Munimum number of proc/mem needed 1<k<16
bindk 2

41

N
N |
() W
procup memup swup
#
trflr — — ——
trpr trmm trsw
procdn memdn swdn
!
Al
N

Transition | Guard Function

trflr ((#(procup) < k) V (#(memup) < k) V (#(swup) = 0))
A((#(procup) > 0) V (#(memup) > 0) V (#(swup) > 0))

Arcs Multiplicity Function
procup — trflr & | #(procup)
trflr — procdn
memup — trflr & | #(memup)
trflr — memdn
swup — trflr & | #(swup)
trflr — swdn

Figure 2.15: SRN for Example 2.4.5.

* GUARD function

func entrflr()

if (#(procup) == 0 and #memup) == 0 and #(swup) == 0)
0

elsaif (#(procup) < k or #(memup) < k or #swup) == 0)
1

else

0

end

end

* ARC CARDNALITY functions

func apfl() #(procup)

42

func amfl() #(memup)

func asfl() #(swup)

srn exampled()

* Places

procup 16

procdn O

memup 16

memdn O

swup 1

swdn O

end

* Timed transitions

trpr placedep procup 0.0000689
trmm placedep memup 0.000224
trsw ind 0.0002202

end

* Immediate transitions

trflr ind 1.0 guard entrflr() priority 100
end

x Input transitions

procup trpr 1

memup trmm 1

swup trsw 1

procup trflr apfl()

memup trflr - amfl()

swup trflr asfl()

end

x Output transitions

trpr procdn 1

trmm memdn 1

43

trsw swdn 1

trflr - procdn apfl()
trflr memdn amfl()
trflr swdn asfl()
end

* Inhibitor arcs

end

* REWARD functions

func reliab()

if (#(procup) > k and #(memup) > k and #(swup) == 1)
1

else

0

end

end

func reward_rate()

if (#(procup) > k and #(memup) > k and #(swup) == 1)
if (#(procup) > #memup))
bindl #(memup)

bindm #(procup)

else

bindm #(memup)

bindl #(procup)

end

bindtemp (1.0—(1.0/m))7
mx(1.0 — temp)

else

0

end

end

x Obtain results
loop t, 500.0, 5000.0, 500.0
expr srn_exrt(t, exampled; reliab), srn_exrt(t, exampled; reward rate), srn cexrt(t, exampled; reward rate)

end

end

Result (Figure 2.16)

System Reliability for the C.MMP model
1 T T T T T

0.9¢ b

0.8 b

Reliability
o
3
T
L

o
o
T

|

0.5 b

0.3 1 Il L 1 L 1 1 Il
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time

Figure 2.16: Graph result for example 2.4.5

45

2.4.6 Database system availability analysis

Source

P. Hiedelberger and A. Goyal, Sensitivity Analysis of Continuous Time Markov chains
using Uniformization, Computer Performance and Reliability, G. lazeolla, P. J. Courtois
and O. J. Boxma (Eds.), Elsevier Science Publishers, B.V. (North-Holland), Amsterdam,
1988.

Description
This exampleisamodel of a database system shownin Figure 2.17.

>
Q| "

S

())
G 5w
() ®)

DB

Figure 2.17: The Database System Architecture.

The system consists of a front end (FE), a database (DB) and two processing sub-
systems. Each processing sub-system consists of two processors (P), a memory (M) and
a switch (S). For the system to be functional, we need at least one of the processing sub-
systems to be operational. The database and the front-end should also be operational. The

46

prldnl

% pr2up

=

tdbfl

dbdn

mmlup swlup
tmmlr
prltmp tswlr
tmml tswl
1f2 —
mmldn swldn
prldn2
mm2up sw2up
tmm?2r tsw2r
pr2tmp
tmm2fl tsw2
T tpr2f2
mm2dn sw2dn

feup

©

tfefl

pr2dnl pr2dn2
Transition | Guard Function
al (#(dbup) = 1) A (#(feup) = 1)

A((#(prlup) > 0) A (#(mmlup) >

V(#(pr2up) > 0) A (#(mm2up) > 0) A (#(sw2up) > 0))

0) A (#(swlup) > 0)

processing sub-system is functional as long as the memory, the switch and at least one
of the processors is functional. When a processor fails, with probability ¢ it fails without
disturbing the system. However, with probability 1 — ¢ the failing processor corrupts the
database causing it to fail and consequently rendering the system un-operational. The
processors, memories and switches can be repaired while the system is up. The memories
and switchesreceive priority over the processorsfor repair. The corresponding SRN model

isshownin Figure 2.18.

Figure 2.18: SRN for Example 2.4.6.

a7

Features

e Guard function.
e Reward based functions.

e Transient analysis.

SHARPE File— srn/ex5.txt

echo Database system availability analysis

echo P. Hiedelberger and A. Goyal,

echo Sensitivity Analysis of Continuous Time Markov chains using Uniformization,
echo Computer Performance and Reliability, G. lazeolla, P. J. Courtois and

echo O. J. Boxma (Eds.), Elsevier Science Publishers, B.V. (North—Holland),

echo Amsterdam, 1988

format 8

epsilon basic 1.0e—10

bind coverage 0.99

bind count 0

* GUARD functions

func enal()

if (#(doup)==0)

0

elsaif (#(feup)==0)

0

elsaf (((#(mmlup)==0) or (#(swlup)==0) or (#(prlup)==0)) and ((#(mm2up)==0) or (#(sw2up)==0) or (#(pr2up)==0)))
0

else

48

1
end

end

srn examples()
* Places

x First processing subsystem
mmlup 1
swlup 1
priup 2
mmldn O
swldn O
pritmp O
prldnl 0
pridn2 0

x Second processing subsystem
mm2up 1
sw2up 1
pr2up 2
mm2dn O
sw2dn O
pr2tmp O
pr2dnl 0
pradn2 0

* Database
doup 1

dbdn O

* Frontend
feup 1

fedn 0

end

* Timed transitions

49

tmm1fl ind 1000./2400. guard enall()
tswifl ind 1000./2400. guard enal()
tprifl placedep prlup 1000./2400. guard enall()
tmmlr ind 1000. guard enal()
tswlr ind 1000. guard enall()

tprlr ind 1000. guard enall()
tmm2fl ind 1000./2400. guard enall()
tsw2fl ind 1000./2400. guard enal()
tpr2fl placedep pr2up 1000./2400. guard enall()
tmm2r ind 1000. guard enal()
tsw2r ind 1000. guard endl()

tpr2r ind 1000. guard enall()

tdofl ind 1000./2400. guard enal()
tfefl ind 1000./2400. guard enall()
end

* Immediate transitions

tprlfl ind coverage priority 100
tprdf2 ind 1.0—coverage priority 100
tpr2fl ind coverage priority 100
tpr2f2 ind 1.0—coverage priority 100
end

* |nput arcs

mmlup tmmilfl 1

swlup tswifl 1

prlup tprlfl 1

pritmp tprlfl 1

pritmp tprif2 1

doup tprif2 1

mmldn tmmir 1

swldn tswlr 1

pridnl tprlr 1

mm2up tmm2fl 1

50

sw2up tsw2fl 1
pr2up tpr2fl 1
pr2tmp tpr2fl 1
pr2tmp tpr2f2 1
doup tpr2f2 1
mm2dn tmm2r 1
sw2dn tsw2r 1
pr2dnl tpr2r 1
doup tdbfl 1
feup ftfefl 1
end

* Output arcs
tmmlfl mmldn 1
tswifl swldn
tprifl prlitmp
tprifl prldnl

=L

tprif2 prldn2
tprdf2 dbdn 1
tmmlr mmlup 1
tswlr swilup 1

tprlr priup 1

tmm2fl mm2dn 1
tsw2fl sw2dn
tpr2fl pr2tmp
tpr2fl pr2dnl

N

tpr2f2 pr2dn2
tpr2f2 dbdn 1
tmm2r mm2up 1
tsw2r sw2up 1
tpr2r pr2zup 1
tdbfl dbdn 1

tfefl fedn 1

end

* Inhibitor arcs
mmldn tprir 1
mm2dn tprlr 1
swldn tprir 1
sw2dn tprir 1
mmldn tpr2r 1
mm2dn tpr2r 1
swldn tpr2r 1
sw2dn tpr2r 1

end

* REWARD function
func reliab()

if (#(dbup)==0)

0.0

elseif (#(feup)==0)
0.0

dseif ((#(mm2lup)==0) or (#(swlup)==0) or (#(prlup)==0)) and ((#(mm2up)==0) or (#(sw2up)==0) or (#(pr2up)==0)))
0.0

else

10

end

end

* Obtain results
loopt, 0.01, 0.1, 0.01
expr srn_exrt(t, examples; reliab)
end
xecho error cumulated
loopt, 0.1,1,0.1
expr srn_exrt(t, examples; reliab)

52

end

end

2.4.7 ATM network under overload

Source

Chang-Yu Wang, D. Logothetis, K.S. Trivedi and I. Viniotis, Transient Behavior of ATM
Networks under Overloads, Proceedings of the IEEE INFOCOM 96, San Francisco, CA,
pp. 978-985, March 1996.

Description

Thisexample models ATM (Asynchronous Transfer Mode) networks under overloads. The

SRN isshownin Figure 2.19.

Features

e Transient analysis.
e Marking dependent firing rates.
e Guard functions.

e Reward functions.

SHARPE File— srn/ex6.txt

echo ATM network under overload

echo Chang— Yu Wang, D. Logothetis, K.S. Trivedi and I. Viniotis,

53

rerouting time

2.1 T |
el bufl | m |
mmpp_L OOk
t1 1
t2 2 J B |
s () [—O-EO0—]
tar2 bufz s . |
{2 servicetime
Transition | Rate Function Guard Function
tary if (#mmppl) /\% el%/\é (#bufl + Ei #Preroute[i]) < K
tars if (FFmmpp2)] else A3 | (#bufo + >, #Pseroli]) < Ko

Figure 2.19: SRN for Example 2.4.7

echo Transient Behavior of ATM Networks under Overloads,

echo Proceedings of the IEEE INFOCOM 96, San Francisco, CA,

echo pp. 978—985, March 1996.

format 8

bind

al 0.0269163

a2 0.0269163
bl 0.00672908

b2 0.00672908

lambdall
lambda21
lambdal2
lambda22
rit 5

1.5058
1.5058
0.00301161
0.00301161

r2 5

mul 2.73
mu2 2.73
K1 16
K2 16

e 0.0001

end

*REWARD Functions
func Qlenl() #(buf 1)+(#(Er tokenl)+#(Er stagel))/rl

func Earriva()

if (#(mmpp_2)<> 0)

bind ret_val lambda21

else

bind ret_val lambda22

end

if (#(Er_tokenl)==1)

bind ret_val ret_val+rl/mul
end

ret_val

end

func Qlen2() #(buf2)+(#(Er token2)+#(Er stage2))/rl

func ELR()

if (Qlen2()+e)>K?2)
if (#mmpp-2)<>0)
bind ret_val lambda21
else

bind ret_val lambda22

end

55

if (#(Er_tokenl)==1)

bind ret_val ret_val+rl/mul
end

ret_va

else

0

end

end

func PFull()

if (Qlen2()+e)>K2
1.0

else

0

end

end

* GUARD Functions
func gar2()

if (Qlen2()+e)<K2

1

else

0

end

end

func garl()

if (Qlen1()+e)<K1)
1

else

0

end

56

end

x RATE Functions
func RErl() ri/mul

func Rarl()

if (#mmpp_1)>0)
lambdall

else

lambdal2

end

end

func REr2() r2/mu2

func Rar2()

if (#(mmpp_2)>0)
lambda21

else

lambda22

end

end

x CARDINALITY Functions
func R2() r2

func depl2()

if (K2—Qlen2()+e)<1)
0

else

1

end

end

57

func R1()rl

srn exampled()

* Places

mmpp1 1

mmpp2 1

bufl 0

Er_tokenl O

Erstagel O

buf2 0

Er_token2 0

Er_stage2 O

end

* Timed Transitions

t2.1 ind bl

t22 ind b2

t11 ind al

t12 ind a2

tarl gendep Rarl() guard garl()
Ertransl ind RErl()

tar2 gendep Rar2() guard gar2()
Er_trans2 ind REr2()

end

* Immediate Transitions

Eriinl ind 1. priority 20
Er_outl ind 1. priority 20
Er.in2 ind 1. priority 20
Erout2 ind 1. priority 20
end

* |nput arcs

mmpp1l t11 1

58

mmpp2 t12 1

bufl Erinl 1
Er_tokenl Ertransl 1
Er_stagel Er_outl R1()
buf2 Erin2 1
Er_token2 Er_trans2 1
Er_stage2 Er_out2 R2()
end

+ Output arcs

221 mmppl 1

t22 mmpp2 1

tarl bufl 1

Er_inl Er_tokenl RL()
Er_transl Er stagel 1
Eroutl buf2 depl2()
tar2 buf2 1

Er_in2 Er_token2 R2()
Er_trans2 Er_stage?2 1
end

* Inhibitor arcs

mmppl 2.1 1
mmpp2 t22 1
Er_tokenl Erinl 1
Er_stagel Erinl 1
Er_token2 Erin2 1
Er_stage2 Er.in2 1

end

x Obtain results
loopt, 10.0, 200.0, 10.0
expr srn_exrt(t, examples; Qlenl)

expr srn_exrt(t, examples; Qlen2)

59

expr srn_exrt(t, exampled; ELR)
expr srn_exrt(t, example6; PFull)
expr srn_exrt(t, example6; Earrival)

end

end

Result (Figure 2.20)

Expected Probabilites for node N2

0.9

T T T
—©— Expected loss rate (ELR)
—— Expected probability that the queue is full (PFull)

0.8

Probability
o o o o o
w > IS o ~
T T

o
N

0.1 L L L 1 L L I I I
0 20 40 60 80 100 120 140 160 180 200
Time (usec)

Figure 2.20: Partia graph result for example 2.4.7

2.4.8 Criticality Importance and Birnbaum Importance
Source

R. M. Fricksand K. S. Trivedi, On Computing Importance Measures Using Reward Mod-
els, VII Smposio de Computadores Tolerantes a Falhas (VII SCTF), pp. 169 — 183, Camp-
ina Grande, Brazil, Jul. 1997.

60

Description

A novel technique for computing importance measures in state space dependability models
is introduced here. Specifically, reward functions in a Markov reward model are utilized
for this purpose, in contrast to the common method of computing importance measures
through combinatorial models and structure functions. The following simple example is

used to show how to calculate Criticality Importance and Birnbaum Importance.

Features

o Reward based measures.

SHARPE File— srn/ex7.txt

echo Criticality Importance and Birnbaum Importance

echo R.M. Fricksand K. S. Trivedi,

echo On Computing |mportance Measures Using Reward Models,
echo VII Simposio de Computadores Tolerantes a Falhas (V11 SCTF),
echo pp. 169— 183, Campina Grande, Brazil, Jul. 1997.

format 8

* REWARD RATE FUNCTIONS

x Criticality
func QL()

if (#(p1) == 1)
1

else

0

61

end

end

func Q2()

if (#(p2)==1)
1

else

0

end

end

func Q3()

if (#(p3) == 1)
1

else

0

end

end

func Q()

if (Q1() +Q2() + Q3() >2)
1

else

0

end

end

x Birnbaum

func gl11()

if (L.0+Q2() + Q3() > 2)
1

else

62

0
end

end

func g10()

if (Q2() + Q3() > 2
1

else

0

end

end

func g21()

if (Q1() +1.0+ Q3() > 2)
1

else

0

end

end

func g20()

if (Q1() +Q3() > 2
1

else

0

end

end

func g31()
if (Q1)+Q2()+1.0>2)
1

else

0
end

end

func g30()

if (Q10+Q2() > 2)
1

else

0

end

end

s example?()
* Places

pl O

p2 0

p3 O

end

* Timed transitions
t1 ind 0.001
t2 ind 0.002
t3 ind 0.003
end

* Immediate transitions
end

* |nput arcs

end

+ Output arcs

t1 pl 1

2 p2 1

t3 p3 1

end

* [nhibitor arcs
pl t1 1
p2 t2 1
p3 t3 1

end

* Obtain results

bind

t 20.

bl srn_exrt(t, example7; g11) — srn_exri(t, example7; g10)
b2 srn_exrt(t, example7; g21) — srn_exrt(t, example7; g20)
b3 srn_exrt(t, example7; g31) — srn_exrt(t, example7; g30)
q srn_exrt(t, example7; Q)

end
expr bl, b2, b3, blxsrn exrt(t, example7; Q1)/q, b2xsrn exrt(t, example7; Q2)/q, b3xsrn exrt(t, example?7; Q3)/q

end

2.4.9 Channel recovery schemein acellular network

Source

Y. Ma, C. W. Ro and K. S. Trivedi, Performability Analysis of Channel Allocation with
Channel Recovery Strategy in Cellular Network, Proceedings of |EEE 1998 Inter national
Conference on Universal Personal Communications (ICUPC’98), Florence, Italy, 5-9 Oc-
tober, 1998.

65

Description

The net isshown in Figure 2.21

Ch+1

Figure 2.21: SRN for a channel recovery schemein acellular network.

Features

Fixed point iteration. The handoff arrival rate (\}) of transition ¢! equals to the

throughput of transition ¢?, which is used to represent the departure of handoff calls.

Reward based functions to compute expected values.

Default measures

Transient analysis

SHARPE File— srn/ex8.txt

echoY. Ma, C. W. Ro and K. S. Trivedi, Performability Analysis of Channel
echo Allocation with Channel Recovery Strategy in Cellular Network,
echo Proceedings of |EEE 1998 I nternational Conference on Universal Personal

66

echo Communications (ICUPC 1998), Florene, Italy, 5—9 October, 1998.

format 8

bind
MAX_ITERATIONS 6
MAX_ERROR 1le-7
t_channel 28

g-c 1

* New call arrival rate
lam_n 10

x handoff every 5 minutes
lam_h_o 0.33

* Handoff_in rate

lam_h_i 0.2

 call duration: 120 seconds
lam_d 0.5

lam_f 0.000016677
mu_r 0.0167

end

srnicupc98 ()

* Places

T O

B O

R O

CP t_channel
end

* Timed transitions
tn ind lam.n
thi ind lamhi

td placedep T lamd

67

tf placedep T lam-f
tthoo placedep T lamho
tr ind mu.r

end

* Immediate transitions

t1 ind 1.0 priority 100
end

* |nput arcs

CP tn gc+1

CP thi 1

tho 1

td 1

tf 1

tr 1

w o 4 -+ -

t1 1
CP t1 1
end

x Output arcs
tn T 1

tn CP gc
thi T 1
tho CP 1
td CP 1
tf B 1

tf R 1

tr CP 1
t1 T 1
end

* Inhibitor arcs

end

* REWARD rate functions

68

func BH()

if (#(CP)==0)
10

else

0.0

end

end

func BN()

if (#(CP) < g0
1.0

else

0.0

end

end

func ACh() #(CP)

func hotput() Rate(t_h_o)

func ftput2() Rate(tf)

func fnum() #(B)

bind i 0
binderr 1

while (i < MAX_ITERATIONS and err > MAX _ERROR)
bindtp srn_exrss(icupc98; hotput)

bind err fabs((lam_h_i — tp)/tp)

bind i i+1

if (< MAX_ITERATIONS)

69

bindlam_h.i tp

end

end

expr
expr
expr

expr

end

srn_exrss(icupc98; BH)

srn_exrss(icupc98; BN)

srn_exrss(icupc98; ACh)

srn_exrss(icupc98; fnum)/srn_exrss(icupcos; ftput2)

Result File— srn/ex8.txt.out

x Y. Ma, C. W. Roand K. S. Trivedi, Performability Analysis of Channel

x Allocation with Channel Recovery Strategy in Cellular Network,

x Proceedings of |EEE 1998 International Conference on Universal Personal

x Communications (ICUPC 1998), Florene, Italy, 5—9 October, 1998.
tp <— 4.054972

err <— 0.950678

i <— 1.000000

lam_h_i <— 4.054972

tp <— 5.557387

err <— 0.270346

i <— 2.000000

lam_h_i <— 5.557387

tp <— 6.098202
err <— 0.088684
i <— 3.000000

lam_h.i <— 6.098202

tp <— 6.280690
err <— 0.029055

i <— 4.000000

70

lam_h_i <— 6.280690
tp <— 6.340547
err <— 0.009440
i <— 5.000000

lam_h_i <— 6.340547
tp <— 6.359983
err <— 0.003056
i <— 6.000000

srn_exrss(icupc98; fnum)/srn_exrss(icupc9s; ftput2): 4.21143605e—004

2.4.10 Testing while statement

Description

This exampleis used to test the syntax of while-statement.

71

SHARPE File— srn/syntaxtest

bindil1
binda2

whileil <3
loopj1,1,31
bindk11
whilekl < 3
expril,jl, k1
bind k1 k1+1
end

end
bindilil+l
ifa>1
loopll, 1,31
expr 11

end

end

end

loopi2, 1,3,1
bindj21
whilej2 <3
expriz, j2
bindj2j2+1
end

end

expr min(1, 2), max(1, 2)

echo ERROR: while cannot be used in func definition

72

func test ()
whilea> 1
end

end

end

73

Chapter 3

Model TypesIntegrated

3.1 Phased-Mission Systems(PM S)
The PMS model isimplemented by Xinyu Zang [18], which has the following features:

e Anefficient BDD-based algorithm isused for analysis, where BDD standsfor binary
decision diagrams[8, 1].

e The system configuration in each phase is specified by afault tree.

e Transient analysisis provided.

3.1.1 Specification of model

The paradigm of fault tree modelsis used to specify the system configuration in each phase.

A PMSis specified as follows:

pmsname { (param.list) }
<phase_number phase_name duration>

end

The phase_number specifieswhich phase the system configurationisin. The phase_name
should be the same as the system_name in the fault tree in which the system configuration

is specified. The duration specifies the duration of this phase.

74

3.1.2 System analysisfunction

The only system analysis function that can be used from PMS model is

tvalue(t, system name)
that gives the unreliability of the PMS at time ¢. Note that there may be latent faults at the

transition of phases. Two switch commands are used to set which time the tvalue uses:

e Itimep: settimeast , i.e. at the end of the phasei — 1.

e rtimep: settimeast,, i.e. at the beginning of the phase .

There are two examplesincluded in the next section.

3.1.3 Examples

A three-phase system

Failure Failure

/A

ABC

4‘

Ol

A B
Phase X Phase Y Phase Z

Figure 3.1: System configuration in three phases

Description The system has three phases X, Y and Z whose configurations are shown
in Figure 3.1 in fault tree format. The equivalent system for the end of mission XY 7 is
75

Failure

Figure 3.2: Equivalent system for the end of mission

shown in Figure 3.2. We also consider the other five possible phase configurations, i.e.,

XZY,YXZ,YZX,ZXY,ZY X.

SHARPE File — pms/yy.timep

format 8
epsilon results 0.000000000001

ftree X

basic a exp(ax)
basic b exp(bx)
basic ¢ exp(cx)
ortopabc

end

ftreeY

basic aexp(ay)

76

basic b exp(b_y)
basic c exp(c.y)
andBC bc
ortopBCa

end

ftreeZ

basic aexp(az)
basic b exp(bz)
basic ¢ exp(c2)
and ABCabc

end

bind

ax 0.0001
ay 0.0001
az 0.0001
bx 0.0001
by 0.0001
b.z 0.0001
cx 0.0001
cy 0.0001
c.z 0.0001
Tx 10
Ty 10
Tz 10

end

pms XYZ
1X Tx
2Y Ty
32Tz

77

end

pms XZY
1X Tx
272 7Tz
3Y Ty

end

pmsY XZ
1Y Ty
2 X Tx
32Tz

end

pmsYZX
1Y Ty
272 Tz
3 X Tx

end

pms ZXY
12Tz
2 X Tx
3Y Ty

end

pmsZY X
12Tz
2Y Ty
3 X TX

end

Itimep

78

loopt, O, 30, 10
expr tvalue(t; XY Z), tvalue(t; XZY)
expr tvalue(t; Y XZ), tvalue(t; YZX)
expr tvalue(t; ZXY), tvalue(t; ZY X)

end

rtimep

loopt, O, 30, 10
expr tvalue(t; XY Z), tvalue(t; XZY)
expr tvalue(t; Y X2Z), tvalue(t; YZX)
expr tvalue(t; ZXY), tvalue(t; ZY X)

end

end

Space application

Description Modifying the space application in [11], we get an example whose mission
alternates between operational phases Launch, Asteroid, Comet, with Hibernation phases

as shownin Figure 3.3.

SHARPE File — pms/space

79

/\

Ha Hb

Phase 2: Hibern.1
. La Lb

Ha Hb Hc Hd

Phase 1: Launch

/N

Ha Hb

Phase 4: Hibern.2
o Aa Ab

Ha Hb Hc Hd

Phase 3: Asteroid

S Ca Cb
Ha Hb Hc Hd

Phase 5: Comet

Figure 3.3: System configuration for space application

80

format 8

x Phase 1

ftree Launch

repeat La exp(RL)
repeat Lb exp(RL)
repeat Ha exp(RHo)
repeat Hb exp(RHO)
repeat Hc exp(RHo)
repeat Hd exp(RHO)
and L Lalb

kofn H 2,4,HaHbHcHd
or top LH

end

* Phase 2

ftree Hibernationl
repeat Ha exp(RHh)
repeat Hb exp(RHh)
and top HaHb

end

* Phase 3

ftree Asteriod

repeat Aa exp(RA)

repeat Ab exp(RA)

repeat Ha exp(RHo)

repeat Hb exp(RHO)

repeat Hc exp(RHo)

repeat Hd exp(RHO)

and A AaAb

kofn H 2,4,HaHbHcHd

81

or top AH

end

* Phase 4

ftree Hibernation2
repeat Ha exp(RHh)
repeat Hb exp(RHh)
and top HaHb

end

* Phase 5

ftree Comet

repeat Ca exp(RC)

repeat Cb exp(RC)

repeat Ha exp(RHo)

repeat Hb exp(RHO)

repeat Hc exp(RHo)

repeat Hd exp(RHO)

and C CaCb

kofn H 2,4, Hd Hc Hb Ha

or top CH
end

bind

RL 0.00005
RA 0.00001
RC 0.0001
RHo 0.00001

RHh 0.000001

Tl 48
T2 17520
T3 672

82

T4 26952
TS5 672

end
pms Space

Launch T1
Hibernationl T2

1

2

3 Asteriod T3
4 Hibernation2 T4
5

Comet T5

end
loopt, TI+T2+T3+T4, TI+T2+T3+T4+T5,112
expr tvalue(t; Space)

end

end

Result Unreliability of space application

83

Unreliability

0.012

0.01}

0.008 |

0.006

0.004

0.002

—— Operational Phase
—¥— Non-Operational Phase

*

2

Time (hours)

3

Figure 3.4: Unreliability of space application

3.2 Multistate Fault Trees

The Multi-state Fault Tree (MFT) model [18] is added in SHARPE as a new model that

has the following features:

e An efficient BDD-based analysis algorithm is used for the MFT solution.
e The specification of MFT model is an extension of fault tree model.

e Most types of results for fault tree model are supported.

3.2.1 Specification of model
A multi-state fault tree is specified by the following:

mstree name { (param.list) }
<mstreeline>

end
An mstreeline has one of the following forms:

1. basic name:state ep
This is a basic component type. It is assigned a name, a state and an exponential
polynomial. Whenever this name appears later in the multi-state tree specification,

it isinterpreted as being the same state of the same physical component.

2. transfer name name
The second name must have been previously defined using basic. Whenever thefirst
name appears later in the multi-state tree specification, it is interpreted as being the
same physical component as the second name.

85

. and name name{:state} name{:state} { name{:state} ... }
Thisrepresents an “and” gate. The gate is assigned the first name, and the rest of the

names form the inputs to the gate. There must be at least two inputs.

. or name name{:state} name{:state} { name{:state} ... }
Thisrepresents an “or” gate. The gate is assigned the first name, and the rest of the

names form the inputs to the gate. There must be at least two inputs.

. kofn name expression, expression, name{: state}

This represents a k-out-of-n gate having identical inputs. The gate is assigned the
first name. The first expression gives k and the second expression gives n. The
inputs to the gate are assumed to be n identically distributed, independent copies of

the second name.

. kofn name expression, expression, name{:state} name{:state} { name{:state} ... }

This represents a k-out-of-n gate whose inputs need not be identical. The gate is
assigned the first name. The first expression gives k and the second expression gives
n. The names following the second expression are the inputs to the gate; there must

be at least two.

In forms 2 through 6, the names making up the block must already be defined. The block

names that are top: state represent a state of top event in multi-state tree.

3.2.2 System analysisfunctions

Most types of results for fault tree model are supported, except for importance measure

and mincuts. A state of top event (top:state) needs to be specified at state_eword in the

corresponding functions. For example, if the cdf is asked for a state of top event, 1, ina

86

multi-state tree, mst, cdf(mst, top: 1) can give the result. Detailed description of fault tree

models can be found in [14].

3.2.3 Examples

Two boards system

Bz ' ﬁ
P, H M,

Figure 3.5: System diagram

Description Figure 3.5 shows a system with two boards B; and B, each having a
processor and a memory. The memories (M; and M) can be shared by both processors
(P, and P,). The processor and memory on the same board can fail separately, but s-
dependently. We define system state as: state 1, no processor or no memory are functional;
state 2, at least one processor and exactly one memory are functional; state 3, at least one
processor and both of the memories are functional. Figure 3.6 showsthe MFTsfor al the

states of the system, where B;; represents the board B; being in state .

SHARPE File — ms/ex1

format 8

mstree ex1

basic Bl:4 prob(0.95)

87

basic
basic
basic
basic
basic
basic

basic

(s s)
1 1 L
AN A N
! — g ! l |
J oo |
/‘x B|.3 B1.4 /7XB14 BIH BZ.Z BI’ B{/ \B 24 /\ / {\
B,, B, |
B,, By, B,, B, B,. B,, B,, B,, B,.B,,B,,
(a) MFT for system state 3 (b) MFT for system state 2 (c) MFT for system state 1

B1:3
B1:2
B1:1
B2:4
B2:3
B2:2
B2:1

prob(0.02)
prob(0.02)
prob(0.01)
prob(0.95)
prob(0.02)
prob(0.02)
prob(0.01)

or gor321 B2:3 B24

and gand311 B1:4 gor321

and @gand312B1:3 B2:4

or top:3 gand3ll gand312

or gor221 Bl:l B1.2

or gor222 B2:1 B22

and
and
and

and

gand211
gand212
gand213
gand214

B1:4 gor222
B1:3 B22
B1.2 B23
gor221 B2:4

Figure 3.6: MFTs of example 3.2.3

or top:2 gand21l gand212 gand213 gand214
or gorl2l B2:3 B21

or gorl22 B2:2 B21

88

or gorl23 B2:3 B22 B21
and gand11l B1:3 gorl2l
and gand112 B1l:2 gorl22
and gand113 B1:1 gorl23
or top:l gandlll gandl12 gandl113

end
expr sysprob(ex1, top:1)
expr sysprob(ex1, top:2)

expr sysprob(ex1, top:3)

end

A communication network

Figure 3.7: The network topology of example 3.2.3

Description Figure 3.7 shows a communication network topology. Each link can sup-

port ¢ calls/connectionls simultaneously and the amount of bandwidth required by each

call/connnection is equal, which means the call/connections are homogeneous. Obviously,

the spare capacity of each link has multiple states: 0, 1, ..., c. We assume the transitions

among the states form a birth-death process with parameter A and ;. represented as a Con-

89

A A A 8 A

VN P VR
@\/@\/@\/ ------- \/@\/@
u 2u 3u (c-1)u cu

Figure 3.8: The CTMC for each link’s spare capacity in example 3.2.3

tinuous Time Markov Chain (CTMC) in Figure 3.8. If there is an application which needs
k simultaneous connections from A to D and all the £ connections must follow the same
route, we can obtain the blocking probability by MFT. The MFT is shown at Figure 3.9,

and the blocking probability is 1 — Pg(t). Let ¢ for al links be 10, and we calculate the
blocking probability.

ll,kll,k+l ll,c 14,k14,k+| l4,c

l2,k12,k+l lZ,c 15,k15,k+l lS,c

15.k15,k-¢-l 1

S5.¢]3,k13,k+l]3,c l2,k12,k+l 12,(:

Figure 3.9: The MFT of example 3.2.3

90

SHARPE File — ms/app

format 8
epsilon results 0.000000000001

bind
lambda 0.1
mu 0.1

t 20000

end

markov link readprobs
10 9 lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
10« mu
9% mu

8 x mu

7 % mu
6% mu
5% mu

4 xmu
3 mu

2% mu

© 00 N oo o b~ W DN P O P N W P> OO O N 00 ©
© 00 N o o b~ WO DN P O FP N W P g o0 N

10 mu

3
a

91

10 1.0

prob(value(t; link, 0))
prob(value(t; link, 1))
prob(value(t; link, 2))
prob(value(t; link, 3))
prob(value(t; link, 4))
prob(value(t; link, 5))
prob(value(t; link, 6))
prob(value(t; link, 7))
prob(valuet; link, 8))
prob(value(t; link, 9))

link1:10 prob(value(t; link, 10))

prob(valuet; link, 0))
prob(value(t; link, 1))
prob(value(t; link, 2))
prob(value(t; link, 3))
prob(value(t; link, 4))
prob(valuet; link, 5))
prob(valuet; link, 6))
prob(value(t; link, 7))
prob(value(t; link, 8))
prob(value(t; link, 9))

link2:10 prob(value(t; link, 10))

end

xdebug mstree
mstree net(t)
basic link1:0
basic link1:1
basic link1:2
basic link1:3
basic link1:4
basic link1:5
basic link1:6
basic link1:7
basic link1:8
basic link1:9
basic

basic link2:0
basic link2:1
basic link2:2
basic 1ink2:3
basic link2:4
basic link2:5
basic link2:6
basic link2:7
basic 1ink2:8
basic link2:9
basic

basic 1ink3:0
basic 1ink3:1
basic 1ink3:2

prob(value(t; link, 0))
prob(value(t; link, 1))
prob(value(t; link, 2))

92

basic 1ink3:3 prob(value(t; link, 3))
basic 1ink3:4 prob(value(t; link, 4))
basic 1ink3:5 prob(value(t; link, 5))
basic 1ink3:6 prob(value(t; link, 6))
basic 1ink3:7 prob(value(t; link, 7))
basic 1ink3:8 prob(value(t; link, 8))
basic 1ink3:9 prob(value(t; link, 9))
basic 1ink3:10 prob(value(t; link, 10))
basic link4:0 prob(value(t; link, 0))
basic link4:1 prob(value(t; link, 1))
basic link4:2 prob(value(t; link, 2))
basic link4:3 prob(value(t; link, 3))
basic link4:4 prob(value(t; link, 4))
basic link4:5 prob(value(t; link, 5))
basic link4:6 prob(value(t; link, 6))
basic link4:7 prob(value(t; link, 7))
basic link4:8 prob(value(t; link, 8))
basic link4:9 prob(value(t; link, 9))
basic 1ink4:10 prob(value(t; link, 10))
basic 1ink5:0 prob(value(t; link, 0))
basic link5:1 prob(value(t; link, 1))
basic 1ink5:2 prob(value(t; link, 2))
basic 1ink5:3 prob(value(t; link, 3))
basic link5:4 prob(value(t; link, 4))
basic link5:5 prob(value(t; link, 5))
basic 1ink5:6 prob(value(t; link, 6))
basic link5:7 prob(value(t; link, 7))
basic 1ink5:8 prob(value(t; link, 8))
basic 1ink5:9 prob(value(t; link, 9))
basic 1ink5:10 prob(value(t; link, 10))
or dinkl link1:3 link1:4 link1:5 link1:6 link1:7 link1:8 1ink1:9 link1:10
or dink2 link2:3 link2:4 link2:5 1ink2:6 link2:7 link2:8 1ink2:9 link2:10

93

or dink3 1ink3:3 1ink3:4 1ink3:5
or dink4 link4:3 link4:4 link4:5
or dink5 [ink5:3 1ink5:4 link5:5
and and4l dlink5 dlink3

and and4r dink2 dlink3

or or3l dgink2 and4l

or or3r dlink5 and4dr

and and2l dlinkl or3l

and and2r dink4 or3r

or top:l1 and2l and2r

end

loopt, 5, 100, 5
expr 1—sysprob(net, top: 1; t)
expr 1—value(t;link,10)—value(t;link,9)

link3:6
link4:6
link5:6

link3:7 1ink3:8 1ink3:9
link4:7 1link4:8 link4:9
link5:7 1ink5:8 1ink5:9

expr 1—value(t;link,10)—value(t;link,9) —val ue(t;link,8) —value(t;link,7)
bind temp 1—value(t;link,10)—val ue(t;link,9) —val ue(t;link,8)—val ue(t;link,7)
expr temp—value(t;link,6) —value(t;link,5)

expr temp—value(t;link,6) —val ue(t;link,5) —val ue(t;link,4) —va ue(t;link,3)

end

end

Result Transient analysisof the applicationat A = 0.1

94

link3:10
link4:10
link5:10

0.35

—— Network
— — - Single Link
0.3 i
I k=9
0.25r -
= s
2 .
5 02r ,
o /
=2 /
€015+ / k=9
[$]
K<} !
o /
01F /
/
/
0.05r /
/
/ - ST T T T T T T T T T T T T T T T —k=7
Y B ‘ ; - other
0 20 40 60 80 100

Figure 3.10: Transient analysis

3.3 Markov Regenerative Process[17]

3.3.1 Specification of model

mrgp name {(param.list)}

« section 1: transitions and transition destributions
< nodenamel edgetype nodename2 ep>

* section 2: rewards (optional)

{reward

< hame expression> }

end

where nodenamel is the starting node and nodename? is the destination node asin Markov
and semi-Markov models, edgetype is either for Markov regenerative edges, or for non-

regenerative edges, ep represents adistribution function, which could be zer o, inf, prob(p),

95

exp(A), gen, cgen, tgen, cdf, Erlang (n, A), hypoexp (i, p2), hyperexp (i, p1, pi2, p2),
mixture (pi, pe, 1), defective (p, p), inst_unavail (A,), ss.unavail (A, p1), oneshot (p),
activek (u), activeU (pu, u2), standbyE (i, pisense), standbyU (py, po, fisense), Dinomial
(A, k,n), kofn_ftree (A, k,n), kofn_block (), k,n), or any of user-defined distribution
functions. Detailed description of the first 8 distribution functions can be found in Ap-

pendix B of [14].

3.3.2 System analysisfunctions

Only steady-state solution of MRGP models is given and the following functions are sup-
ported:

e prob (sys_.name, nodename {; arglist})

Gets the steady state probability for node nodename of the MRGP model named

sys_name.

e exrss(sys.name{; arglist})

Calculates the expected steady-state reward rate value.

3.3.3 Example- Cedlular Networkswith Generally Distributed Hand-
off Traffic

Source

S. Dharmargja, and K. Trivedi, Performance Analysis of Cellular Networks with Generally
Distributed Hand-off Traffic, COMMUNICATED, 2001.

96

Description

Consider asinglecell inaTDMA (Time Division Multiple Access) wireless system, where
the base transceiver system of the cell has NV base repeaters, one controller and a local
area network connecting these subsystems. Each base repeater provides M time-division-
multiplexed channels. The cell reserves one channel for signaling transfer (namely control
channel), whichresidesin one of NV baserepeaters. Therefore, thetotal number of available
channels for callsin the cell is NM — 1 (=). For convenience in demonstrating the
approach, we assume that the system has hexagonal geometry and that the cellular system

ishomogeneous. That is, al the cells are identical and have the same statistical behavior.

A call is accepted only when the cell can find a channel not in use, otherwise, the call
is regjected. Call arrivals in cellular system can be classified as new calls and hand-off
cals. New calls are generated by mobile originating or mobile terminating connections
established in the initial cells, whereas hand-off calls are ongoing calls transferring from
other cells. A hand-off call could fail due to insufficient bandwidth available in the new

cell, and in such case, adrop of hand-off call occurs.

The dropping of a hand-off call is considered more severe than the blocking of a new
call. One method ([7, 9]) to reduce the dropping probability of hand-off callsisto reserve
a fixed number of channels exclusively for hand-off calls. These exclusively reserved
channels are referred as guard channels. For example, if the total number of channelsisC
and the number of guard channels in the channel poal is g, then the number of available

channelsfor new calsisC — g.

We assume that an ongoing call (new or hand-off) completion times are exponential
with parameter 14, and the time at which the mobile station engaged in the call departs

the cell are exponential with parameter ,. We aso assume that the inter-arrival times

97

of hand-off calls are generally distributed with distribution function G(¢) and with finite
mean 1/, which isindependent of new calls arrival time. Note that new calls who find all
C' — g channels are busy leave the system whereas hand-off calls who find all C' channels
are busy leave the system. The state transition diagram for this model is shown in Figure
3.11.

15 21 (CgD) u C9 n (C-g+) C1 p Cu

Figure 3.11: State transition diagram using MRGP modeling

SHARPE File— mrgp/cellular

format 8

bind
lambdaE 63
lambda 49
mu 1

end
*C=50g=3

mrgp cellular5_3
0—1 exp(lambda)

exp(mu)

exp(lambda)

exp(2xmu)

exp(3xmu)

o o A WN P P
|
R > WO DM P N O

exp(4+mu)
exp(5xmu)

Erlang(3, lambdaE)

98

1@ 2 Erlang(3, lambdaE)
2@ 3 Erlang(3, lambdaE)
3@4 Erlang(3, lambdaE)
4@5 Erlang(3, lambdaE)

reward

2 1

3 1

4 1

5 1

end
xC=6,g=3

mrgp cellular6_3
exp(lambda)

exp(mu)

exp(lambda)

exp(2xmu)

exp(lambda)

exp(3xmu)

exp(4+mu)

exp(5xmu)

exp(6xmu)

O o b W NN B B O
|
b O WN W R N O R

®

Erlang(3, lambdaE)
1@ 2 Erlang(3, lambdaE)
2@ 3 Erlang(3, lambdaE)
3@4 Erlang(3, lambdaE)
4@5 Erlang(3, lambdaE)
5@6 Erlang(3, lambdaE)

reward
3 1
4 1

99

«C=7,0=3

mrgp

o N o 00 M W W NN P L O
|
= O O A W A N W R N O R

@

1@2
2@3
3@4
4@5
5@6
6@7

reward

end

cellular7_3
exp(lambda)
exp(mu)
exp(lambda)
exp(2xmu)
exp(lambda)
exp(3xmu)
exp(lambda)
exp(4+mu)
exp(5xmu)
exp(6xmu)
exp(7+xmu)
Erlang(3, lambdaE)
Erlang(3, lambdaE)
Erlang(3, lambdaE)
Erlang(3, lambdaE)
Erlang(3, lambdaE)
Erlang(3, lambdaE)
Erlang(3, lambdaE)

100

expr prob(cellular5_3, 5)
expr exrss(cellular5_3)
expr prob(cellular6_3, 6)
expr exrss(cellular6_3)
expr prob(cellular7_3, 7)
expr exrss(cellular7_3)

end

3.4 Reédiability Block Diagrams

3.4.1 Specification of model [14]

A reliability block diagram is specified by:

block name { (param.list) }
<blockline>

end

An blockline has one of the following forms:

1. comp name ep
Thisis a basic component type. It is assigned a name, and an exponentia polyno-

mial.

2. parallel name name name { name ... }
This represents components combined in parallel. The parallel system is assigned
the first name, and is composed of the rest of the names. There must be at least two

components.

101

3. or name name name { name.... }
This represents components combined in series. The series system is assigned the
first name, and is composed of the rest of the names. There must be at least two

components.

4. kofn name expression, expression, name
This represents a k-out-of-n system having identical components. The gate is as-
signed the first name. The first expression gives k and the second expression gives
n; the second name gives a component or sub-block. The first name is assumed to
consist of nidentically distributed (independent) copies of the second name. In order

for the system to be operating, k of the components must be operating.

5. kofn name expression, expression, name name { name.... }
This represents a k-out-of-n system whose components need not be identical. The
systemisassigned the first name. The first expression gives k and the second expres-
sion gives n. The names following the second expression are the components to the

system; there must be at |east two.

Detailed description of how to analyze reliability block diagrams can be found in Ap-
pendix B of [14].

3.4.2 Example-2 Processors, 3 Memories System
Description

A system has 2 processors and 3 Memories. Each processor has a failure rate \,. Each
memory has afailure rate \,,,. The systemisup if at least one processor and at least £ (1

or 2) memoriesare up. The reliability block diagram for £ = 1 isshownin Figure 3.12.

102

Figure 3.12: Reliability block diagram for the 2 processors, 3 memories system

SHARPE File— block/2p3m.block

* TWO— processors, three—memories system
* Use ablock diagram to model system reliability

* K is the minimum number of memories needed

format 8

block nodep(k)

comp proc exp(lambdap)
comp mem exp(lambdam)
parallel procs proc proc
kofn memsk,3,mem
series top procs mems

end

* Now assign failure rate values

103

bind
lambdap 1/720
lambdam 1/(2x720)

end

x Compare mean time to system failure under

x two conditions: a minimum of

* one memory required vs. 2 memories

x find the difference between the use of tvalue and value

expr mean(nodep; 1), mean(nodep;2), mean(nodep;1)/mean(nodep;2)

x Now compare system unreliabilities
func unrel 1(t) tvalue(t;nodep;1)

func unrel 2(t) tval ue(t;nodep;2)

loop t,0,50,10

expr unrel1(t), unrel 2(t)

end

end

3.5 Fault Trees

3.5.1 Specification of model

A fault treeis specified by the following:

ftree name { (param.list) }
<ftreeline>

end

An ftreeline has one of the following forms:

104

. basic name ep

Thisis a basic component type. It is assigned a name, and an exponentia polyno-
mial. Whenever this name appears later in the fault tree specification, it isinterpreted
as being a physically distinct copy of an event type having the assigned exponential

polynomial.

. repeat name ep
This is also a basic event assigned a name and an exponential polynomial. In this
case, whenever this name appears later in the fault tree specification, it isinterpreted

as being the same physical event.

. not name name
This represents a “not” gate. The gate output is assigned the first name, and the

second names form the input to the gate. See the example C.1.2.

. transfer name name
The second name must have been previously defined using basic or repeat. When-
ever the first name appears later in the fault tree specification, it is interpreted as

being the same physical component as the second name.

. and name name name { name.... }
Thisrepresents an “and” gate. The gateis assigned the first name, and the rest of the

names form the inputs to the gate. There must be at |east two inputs.

. nand name name name { name.... }

This represents a “nand” gate. The gate output is assigned the first name, and the
rest of the names form the inputs to the gate. There must be at least two inputs. See
the example C.1.1.

105

10.

11.

12.

or name name name { nhame... }
Thisrepresents an “or” gate. The gate is assigned the first name, and the rest of the

names form the inputs to the gate. There must be at least two inputs.

nor name name name { name.... }

Thisrepresentsa “nor” gate. The gate is output assigned the first name, and the rest
of the names form the inputs to the gate. There must be at least two inputs. See the
example C.1.1.

kofn name expression, expression, name

This represents a k-out-of-n gate having identical inputs. The gate is assigned the
first name. The first expression gives k and the second expression gives n. The
inputs to the gate are assumed to be n identically distributed, independent copies of

the second name.

nkofh name expression, expression, name

This represents a not k-out-of-n gate having identical inputs. The gate output is
assigned the first name. The first expression gives k and the second expression gives
n. The inputs to the gate are assumed to be n identically distributed, independent

copies of the second name.

kofn name expression, expression, name name { name.... }

This represents a k-out-of-n gate whose inputs need not be identical. The gate is
assigned the first name. The first expression gives k and the second expression gives
n. The names following the second expression are the inputs to the gate; there must

be at least two.

nkofn name expression, expression, name name { name.... }
This represents a not k-out-of-n gate whose inputs need not be identical. The gateis
assigned the first name. The first expression gives k and the second expression gives

106

n. The names following the second expression are the inputs to the gate; there must
be at least two. The inputs are assumed to be configured so that the system only fails
if k of theinputsfail. See the example C.1.2.

In forms 2 through 8, the names making up the block must already be defined.

3.5.2 System analysisfunctions

New analysis functions and new features are listed as the following. Other analysis func-

tions are described in Appendix B of [14].

1. mincuts(system name {; arglist})
This prints out the set of mincuts of a fault tree (See the example C.1.3).

2. Resultsfor gate:
User can obtain results at each gate output by assigning the name of the gate to
state_eword in corresponding function. For example, if the cdf is asked for gate, gn,

inafault tree, ft, cdf(ft, gn) can give the resuilt.

3. Importance measure for an event:
Three types of importance measure can be obtained from afault tree model (see the

example C.1.4):
(@ bimpt(t; system_name, event_name {; arglist})
This gives Birnbaum’simportance for event, event_name, at time ¢.
(b) cimpt(¢; system name, event_name {; arglist})
This gives criticality importance for event, event_name, at time¢.
(c) simpt(system name, event_name {; arglist})
This gives structural importance for event, event_name.

107

3.5.3 Example-2 Processors, 3 Memories System

Description

This is the same system introduced in chapter 3.4.2. The corresponding fault tree is in
Figure 3.13, where P1 and P2 represent the two processors, and M1, M2, and M3 de-
note the three memories, respectively. Furthermore, 1, and s, have been introduced as
independent repair rates for each processor and each memory, respectively. Then, the in-
stantaneous unavailability of the system has been calculated via the model named indrep

in the SHARPE file listed at the chapter 3.5.3.

Failure

or

and and

P1 P2 M1 M2 M3

Figure 3.13: Fault tree for the 2 processors, 3 memories system

SHARPE File— ftree/2p3m.ftree

x 2 processors, 3 memories system modeled by fault tree

format 8

108

ftree nodepf (k)

basic proc exp(lambdap)
basic mem exp(lambdam)
and procs proc proc

kofn mems (4—k),3,mem
or top procs mems

end

*x Now assign failure rate values
bind

lambdap 1/720

lambdam 1/(2+720)

end

x note the differencein kofn of ftree with block
x Compare answers obtained by two
x distinct models of the same system

expr mean(nodepf;1), mean(nodepf;2), mean(nodepf;1)/mean(nodepf;2)

x Assume I ndependent Failure And Independent Repair
x model system insta. availability

ftree indrep(k)

basic proc inst_unavail (lambdap,mup)

basic mem inst_unavail (lambdam,mum)

and procs proc proc

kofn mems (4—k),3,mem

or top procs mems

end

* Assign Repair Rate Values
bind
mup 1/2.5

109

mum 1/2.5

end

x Now compare system unavailabilities
func unavail 1(t) tvalue(t;indrep;1)

func unavail 2(t) tvalue(t;indrep;2)

loop t,0,50,10

expr unavail 1(t), unavail 2(t)

end

end

3.6 Rédiability Graphs

3.6.1 Specification of model
A reliability graph is specified by the following:

relgraph name { (param.list) }

* section 1. unidirectional edges

<edge_name edge_nameep { transfer edgel_name edgel_name{ edge2_name
edge2_name... }}>

* section 2:bidirectional edges (optional)

{ bidirect

<edge_name edge_nameep { transfer edgel_name edgel_name{ edge2_name
edge2_name... }}>}

end

The transfer part in the above specification is the extension that defines the repeated
edges. The edgel from the first edgel_name to the second edgel_name is repeated for the
110

edge from the first edge_name to the second edge_name. So are the optional edges from
the fist edgel_name to the second edgei _name. Examples of repeated edges are listed in
chapter 3.6.3.

3.6.2 System analysisfunctions

Two new types of system analysis functions are integrated as the following (for others, see

Appendix B of [14]):

1. Mincuts and minpaths set:

(8 mincuts(system.name {; arglist})

This prints out the set of mincuts of areliability graph. See the example C.2.1.

(b) minpaths(system_name {; arglist})
This prints out the set of minpaths of areliability graph. Seethe example C.2.2.

2. Importance measure for an edge:

Three types of importance measure can be obtained from a reliability graph model

(see the example C.2.3):

(@ bimpt(t; system_name, node_name, node name {; arglist})
This gives Birnbaum’s importance for edge, (node_name, node_name), at time
t.
(b) cimpt(t; system.name, node_name, node_name {; arglist})
This gives criticality importance for edge, (node_name, node_name), at time¢.
(c) simpt(system_name, node_name, node_name {; arglist})

This gives structural importance for edge, (node_name, node_name).

111

3.6.3 Examples

2 Processors, 3 Memories System with I nter-connection Dependence

Description Thisisstill a system with 2 processors and 3 memories. Compared to the
system mentioned in chapter 3.4.2 and chapter 3.5.3, inter-connection dependence has been
considered. Processor P1 only uses memory M1 and M3, and processor P2 only uses
memory M2 and M 3. The system is up when at least one processor and one memory are
working. In the following SHARPE file, the model rel_proc_mem?2 is based on repeated
edges. The reliability graph for the model rel_proc_mem is shown in Figure 3.14.

A M1
Pl
1 gl
: M3 A
Src share > sink
A
2
P2 M2

Figure 3.14: Rdliability graph for the 2 processors, 3 memories system with in-
ter-connection dependence without repeated edges

SHARPE File— relgraph/repeat.txt
* reliability graph for
* 2—[rocessor,

* 3—memory system

relgraph rel _proc_mem
src P1 exp(1/Ptime)
src P2 exp(1/Ptime)
P1 sink exp(1/Mtime)
P2 sink exp(1/Mtime)

112

P1 shareinf
P2 shareinf
share sink exp(1/Mtime)

end

bdd on

relgraph rel _proc_mem?2

src P1 exp(1/Ptime)

src P2 exp(L/Ptime)

P1 sink exp(/Mtime)

P2 sink exp(1/Mtime)

P1 sink exp(/Mtime) transfer P2 sink

end

bind
Ptime 720
Mtime 2x720

end

pacdf(rel jproc_mem)

cdf(rel _proc_mem)

pacdf(rel jproc_mem?2)
cdf(rel _proc_mem?2)

end

An Electrical-pyrotechnic System

Source A.Birolini, Quality and Reliability of Technical Systems, Springer-Verlag, Berlin
Heidelberg, New York, 1994.

113

Description To separate asatellite’ sprotective shielding, aspecial el ectrical-pyrotechnic
system shown in Figure 3.15 isused. An electrical signal comes through the cables £'; and
E5 (redundancy) to the electrical-pyrotechnic signal to explosive charges for guillotining
bolts £, and E;3 of the tensioning belt. The charges can be ignited from two sides, al-
though one ignition will suffice (redundancy). For fulfillment of the required function,
both bolts must be exploded simultaneously. Calculate the probability of failure of this

separation system.

Figure 3.15: A special e ectrical-pyrotechnic system

SHARPE File— relgraph/ex2.15

relgraph ex2.15(el, €2, €3, e4, €5, €6, €7, €8, €9, €10, el1, €12, el13)
src pl exp(el)

src pl exp(e2)

p1 p2 exp(e3)

114

p2 p4 exp(ed) transfer p8 p10
p2 p3 exp(e5) transfer p8 p9

p6 p7 exp(eb)

p12 p13 exp(e7)

p5 p7 exp(es)

p11 p13 exp(e9)

p4 p6 exp(el0) transfer p10 p12
p3 p5 exp(ell) transfer p9 p11
p7 p8 exp(el2)

p12 sink exp(el3)

end
pacdf(ex2.15; 1, 2, 3,4, 5,6, 7, 8,9, 10, 11, 12, 13)

end

3.7 Series-parallel Acyclic Directed Graphs
3.7.1 Specification of model
A series-parallel graph is specified asfollows:

graph name {(param.list)}

<name { name } >

end

<graphline>

end

A graphline has one of the following forms:

115

1. dist name ep
this assigns the given ep, which is a defined distribution function, to the given graph
node. An ep must be specified for each graph node.

2. exit name exit_type
This assigns the given exit type to the given node. For every node that has more than
on exiting edge, an exit type must be specified. If a graph called g has more than
one entrance node (node with no predecessors), then SHARPE supplies an dummy
entrance node called E.g with zero exponential polynomial and edges leading from
E.g to each user-specified entrance node. When thisisthe case, the user must supply

an exit type for the node E.g.

3. prob name name expression
The expression gives a probability value to be assigned to the edge going from the
first name to the second name. For each node x that has n successors and whose
exit typeis prob, probability values must be assigned to at least n — 1 of the edges
leading out of x. If values are given for all of the edges, the sum of the values must
be 1. If onevalueis missing, the sum of the values must be lessthan 1 and SHARPE

will compute the missing value.

4. multpath
This line requests multiple-path information for the system. Whenever there are
probabilistic subgraphs that are not inside maximum, minimum, or k-out-of-n sub-
graphs, SHARPE considersthe graph to contain more than one path. If multiple-path
information isrequested, SHARPE will compute for each path the probability of tak-
ing the path and the conditional distribution for the time-to-finish, given that the path
is taken.

The exit types (exit_type) are
116

1. prob
The paralel subgraphs are probabilistic.

2. max

All of the parallel subgraphs must complete before going on.

3. min

One of the parallel subgraphs must complete before going on.

4. kofn expression, expression
Thefirst expression gives k and the second expression givesn; k out of then parallel
subgraphs must complete before going on. If this exit type is specified for a graph
with exactly one successor node, that node is assumed to be duplicated n times, with
each copy being identically distributed. Except for thiscase, it isrequired that anode
with kofn exit type have exactly n following parallel subgraphs.

Detailed description of how to analyze series-parallel acyclic directed graph can be
found in Appendix B of [14].

3.7.2 Example- A CPU-Input/Output Overlap System

Source

D.F. Towsley, J.C. Browne and K.M. Chandy, Models for Parallel Processing within Pro-
grams, CACM, October, 1978.

117

Description

Figure 3.16 shows a series-parallel graph representing one iteration of the program with
CPU-Input/Output Overlap. In each iteration of the program, there are two stages. The
first stageis awaysa CPU burst. The second stage consists of either pure /O, or | /O that
may be overlapped with a second CPU burst. Asin Figure 3.16, the probability that the
second stage contains CPU-1/O overlap is given by p. In the following SHARPE file, the
model OVERLAP representsthe model in Figure 3.16, whilethe model SERIAL denotesthe
model without CPU-1/O overlap. The speedup for various values of p has been computed.

Figure 3.16: Precedence graph for the CPU-1/O overlap system

SHARPE File—th/24

x CPU—I1/O overlap

bind

mul 1/0.0376
mu2 1/0.125
lambda 1/0.14995

end

graph SERIAL(p)

118

cpul cpu2
cpu2 o2
cpul iol

end

exit cpul prob

prob cpul cpu2 p

dist cpul exp(mul)
dist 0ol exp(lambda)
dist cpu2 exp(mu2)
dist i02 exp(lambda)

end

graph OVERLAP(p)

cpul zerol
cpul ol
zerol cpu2
zerol 02
end

exit cpul prob

prob cpul zerol p
exit zerol max

dist cpul exp(mul)
dist zerol zero

dist 0ol exp(lambda)
dist cpu2 exp(mu2)
dist i02 exp(lambda)

end

expr mean(SERIAL;0.7)
expr mean(OVERLAP;0.7)

119

expr mean(SERIAL;0.6)/mean(OVERLAP;0.6)
expr mean(SERIAL;0.7)/mean(OVERLARP;0.7)
expr mean(SERIAL;0.8)/mean(OVERLAP;0.8)
expr mean(SERIAL;0.9)/mean(OVERLAP;0.9)
expr mean(SERIAL;1.0)/mean(OVERLAP;1.0)

bind
mul 1/0.01

end

expr mean(SERIAL;1.0)/mean(OVERLAP;1.0)

end

3.8 Single-chain Product-form Queueing Networks

3.8.1 Specification of model

A single-chain product-form queueing network is specified as follows:

pfgn name {(param.list)}

* section 1. station-to-station probabilities
< station_name station_name expression>
end

* section 2: station types and parameters
<stationline>

end

section 3: number of customers per chain
< chain_name expression>

end

120

An blockline has one of the following forms:

1. station_nameisrate
The station is an infinite server; each job at the server has exponential service-time

CDF with the specified rate.

2. station_name fcfsrate
The station is a first-come-first-serve server. Jobs in the queue are served once at
a time; the job being served (if any) has exponential service-time CDF with the

specified rate.

3. station_name psrate
Jobs at the station share the server. When n jobs are at the station, each has expo-

nential service-time CDF with rate rate/n.

4. station_name Icfspr rate

The serving algorithm is " last come first served, preemptive resume’.

5. station_name ms number _of_servers, rate
The station contains multiple servers; the number of serversis given by the expres-

sion number _of_servers. Each server has the same rate.

6. station_nameldsrate, rate, . ..
There is one server, whose service rate depends on the number of jobs at the station.
Thefirst rate applies when there is one job, the second rate when there are two jobs,
and so on. If there are fewer rates given than the maximum number of jobs, the last
rate on the line is assigned to all numbers of jobs for which no rate was explicitly

given.

Detailed explanation of how to analyze single-chain product-form queueing networks

can be found in Appendix B of [14].
121

3.8.2 Example—aTerminal-oriented System with aLimited Number
of Memory Partitions [16]

Description

This is the example 9.16 in [16]. As shown in Figure 3.17, the system has M terminals.
Only n active jobs can concurrently share the main memory, which means M = n. Also,
there is an assumption that the main memory is large enough so that no waiting in the job
queue is required, which means the station term is an infinite server with the key word
is assigned to it as mentioned in the previous section. The model tested in the following
SHARPE file has m = 3.

Maximum number of

jobsin the CPU-1/O

subsystem is limited
ton

Figure 3.17: a Terminal-oriented System with a Limited Number of Memory Partitions

SHARPE File— pfgn/9.16-nocon

* Thisexampleis Ex 9.16 from the book.
x Thisimplements the queueing network ignoring the

x memory constraint. This correspondsto E[R"] in table 9.12

122

bind
p00.05
pl0.5
p20.3
p30.15
scpu 89.3
S0l 44.6
si02 26.8
sio313.4
sterm 1/15

end

pfgn ex9.16(n)
cpu term pO
cpuiolpl
cpuio2 p2
cpuio3 p3
iolcpul

io2 cpu l
io3cpu l
termcpu 1
end

cpu fefsscpu
termis sterm
iol fcfssiol
io2 fcfssio2
io3fcfssio3

end

cust n

end

123

func ET(N) scpusutil (ex9.16,cpu;N)*p0
func ER(M) M/ET(M) — Usterm

expr ER(10)

expr ER(20)

expr ER(30)

expr ER(40)

expr ER(50)

expr ER(60)

end

3.9 Multiple-chain Product-form Queueing Networks

3.9.1 Specification of model

A multiple-chain product-form queueing network is specified as follows:

mpfgn name {(param.list) }

* section 1. station-to-station probabilities for each chain
<chain chain_name

< station_name station_name expression>

end>

end

* section 2: station types and parameters

<stationline>

{ <chain_name expression, ...> }

end>

end

124

* section 3: number of customers per chain
< chain_name expression>

end

Detailed explanation of how to analyze multiple-chain product-form queueing net-

works can be found in Appendix B of [14].

3.9.2 Example—aTerminal-oriented System with aLimited Number
of Memory Partitions [16]

Description

Thisisthe multiple-chain product-form queueing network version of the system mentioned

in chapter 3.8.2.

SHARPE File— mpfgn/inp9.16b

* Thisexampleis Ex 9.16 from the book. Thisimplements the queueing
* network ignoring the
* memory constraint. This correspondsto E[R’] in table 9.12

x results should be the same as for pfgn/9.16—nocon

bind

p0 0.05
pl0.5
p20.3
p30.15
scpu 89.3
siol 44.6

125

si02 26.8
sio3134
sterm 1/15
end

mpfgn ex9.16(n)
chain cust
cpu term pO
cpuiolpl
cpuio2 p2
cpuio3 p3
iolcpul

io2 cpu l
io3cpul
termcpu 1
end

end

cpu fefsscpu
end

termis sterm
end

iol fcfssiol
end

io2 fcfssio2
end
io3fcfssio3
end

end

custn

end

func ET(N) scpusxmutil(ex9.16,cpu;N)xp0
func ER(M) M/ET(M) — L/sterm
expr ER(10)

126

expr ER(20)
expr ER(30)
expr ER(40)
expr ER(50)
expr ER(60)

end

3.10 Markov Chains

3.10.1 Specification of model

A Markov chain is specified as follows:

markov name {(param list)} { readprobs }
* section 1: transitions and transition destributions
<markov_edgeline>

% section 2: rewards (optional)

{reward { default expression}
<markov_setline} >}

end

* section 3: initial state probabilities
{<markov_setline>}

end

{ fastmttf

< namereada >

< namereadf >

end }

127

where markov_edgeline are either

name name expr on

or

loop simple_var, low, high {,increment }
<markov_edgeline>

end

and markov_setline are either

name expression

or

loop simple_var, low, high {,increment }
<markov_setline>

end

which you can set reward rate or initial values to the node name.

Normally, an irreducible Markov chain doesn’'t have been specified with initial state
probabilities, which means it is not necessary for an irreducible Markov chain to have
section 3 unless users specify readprobs. Also, without initial state probabilities, tvalue

and prob cannot be applied to irreducible Markov chains.

Fast mean time to failure(MTTF) is introduced from the paper [6] and requires the
operating system running SHARPE supports IEEE 754 floating point standard. See the
example at chapter C.3.1.

128

Detailed information of how to analyze Markov chains can be found in Appendix B of

[14].

3.10.2 Example— Erlang L oss Model
Description

Consider a telephone switching system having » trunks with an infinite caller population.
The arrival times are exponentially distributed with rate A and call holding times are expo-
nentially distributed with average i When an arriving call finds al n trunks are busy, it is
lost without further trying. Given number of non-failed channels, the principal quantity of
interest is the blocking probability, which is obtained by the steady-state probability that
all trunks are busy. The state diagram is shown in Figure 3.18.

A A A A
0S0SounhTed
H 2u 3u I u

Figure 3.18: State diagram for the Erlang loss performance model

Assume that a singlerepair unit is shared by all the trunks. Also assume that the times
to trunks failures and repair are exponentially distributed with rate v and 7, respectively.
The availability model isthe CTMC in Figure 3.19.

nv (nl)v (n2)72

Figure 3.19: State diagram for the Erlang loss avail ability model

129

The composite model is shown in Figure 3.20. The state (i, j) represents that non-

failed trunks and j calls are currently in the system.

Figure 3.20: State diagram for the Erlang loss performability composite model

SHARPE File — bluebook/8.27

* Thisexampleis Ex 8.27 from the book.

* Thisimplements the Erlang loss model.
format 8
bind

lambda 49

mu 3

130

MTTF 1000
MTTR 24

end

* Hierarchical Model

* Availability submodel
markov perf(C)
loopi,0,C—1
$(i) $(i+1) lambda
$(i+1) $() (i+1)xmu
end
end

end

* function to use to define the reward rates for the measure
x the total call blocking probability

x Reward function used for k>g

func Rew(C) prob(perf,$(C);C)

markov hier
loopi,C,1,—1

$() $(—1) iIMTTF

$(i—1) $(1) UMTTR
end
reward
01

loopi,1,C

$(i) Rew(i)

end

end

x Initial probability

131

$C) 1

end

loop nb,35,45,1
bind C nb
expr exrss(hier)

end

var Td exrss(hier)
loop nb,35,45,1
bind C nb
expr Td

end

x Composite model
markov cp
loopj,1,C,1
* Definition of the Availability part of the model
* Downwards failure
loopi,Cj,—1
$()-$(-1) $(i—1) $(—1) (i—j+1)/MTTF
$(i—1)-$(—1) $(i) $(—1) UMTTR
* Definition of the Performance part of the model
$(i)-$(—1) $(i)-$(j) lambda
$(1)-$() (1)(—1) j«mu
x Diagonal failure
$()-$() $(i—1) $(—1) (Y/MTTF
end
end
end

end

132

+ Outputs

x Total call blocking probability
var Tb sum(i,0,C, prob(cp,$(i) $(i)))
var Unavail prob(cp,0.0)

loop nb,35,45,1
bind C nb
expr Tb
end
end
Result
10 x107*
1
omposite

Total blocking probability
o

I I I I I I I I I
35 36 37 38 39 40 41 42 43 44 45
Number of processors

Figure 3.21: Total blocking probability in the Erlang loss performability model

133

3.11 Semi-Markov Chains

3.11.1 Specification of model

A semi-Markov chain is specified as follows:

semimark name {(param.list)} { cond | uncond }
« section 1: transitions and transition destributions
<nodenamel nodename2 ep>

* section 2: rewards (optional)

{reward { default expression}

<name expression>}

end

section 3: initial state probabilities

{<name expression>}
end
{ fastmttf

< hamereada >
< namereadf >

end }

An irreducible semi-Markov chain doesn’t have section 3. The key word fastmttf is used
for fast MTTF [6]. See the example C.3.2.

Detailed information of how to analyze semi-Markov chains can be found in Appendix

B of [14].

134

@/@

e

Figure 3.22: A semi-Markov chain

3.11.2 Example— Figure 3.22

SHARPE File— semimark/1

semimark main
21gen\
1,0,0\
—1, 0, —lambda\
—lambda, 1, —lambda
20exp (.01)
end

end

bind
lambda .02

end

Icdf (main,2)
cdf (main,1)
cdf (main,0)

end

135

3.12 Generalized Stochastic Petri Nets

3.12.1 Specification of model

A generalized stochastic Petri Net(GSPN) is specified as follows:

gspn name (param.list)

* section 1. places and initial numbers of tokens

< place_name expression>

end

% section 2: timed transition names, types and rates
<transition_name ind expression>
<transition_name dep place_name expression>
end

* section 3: immediate transition names, types and weights
<transition_name ind expression

<transition_name dep place_name expression>
end

* section 4: place-to-transition arcs and multiplicity
< place_name transition_name expression>

end

* section 5: transition-to-place arcs and multiplicity
<transition_name place_name expression>

end

% section6: inhibitor arcs and multiplicity

< place_name transition_name expression>

end

136

Detailed information of how to analyze generalized Stochastic Petri Nets can be found
in Appendix B of [14].

3.12.2 Example— M /M /1/K Queuewith Server Failure and Repair
Description

The system has 1 server with buffer length K. So K jobs can be in the system at atime.
The exponentially failure and repair rates for the server are v and 7, respectively. See the

Figure 3.23.

job-arrival

service
1iiiill" | 1‘!!!!}” ID
s ce
=1 0

our
K p=2

failure repair
‘iiiiii» | ‘iiiiii} |
—>f —> —_—
down

Figure 3.23: GSPN model for queue with server failure and repair

SHARPE File — whitebook/mm1k.gspn

x Initialize Variables
bind

LAM 1

MU 2

GAM 0.0001

TAU 0.1

137

inhibtok 1

end

gspn mm1k(K)

* Initial # of Tokensin Places
jobsource K

queueO

serverup 1

serverdown O

end

* Rates of Timed Transitions
jobarrival ind LAM
service ind MU

failure ind GAM

repair ind TAU

end

* No Immediate Transitions
end

* [nput Arcs
jobsourcejobarrival 1
gueue service 1

serverup failure 1
serverdown repair 1

end

+ Output Arcs

jobarrival queue 1

service jobsource 1

failure serverdown 1
repair serverup 1

end

* Inhibit Arcs

serverdown service inhibtok

138

end

var Lreject LAM«prempty(mmlk,jobsource;10)
var Pidle prempty(mm1k,queue;10)

var Preject prempty(mmik,jobsource; 10)

var avquel ength etok(mm2k, queue; 10)

var thruput tput(mm1k, service; 10)

var utilization util(mm1k, service; 10)

expr Pidle

expr Lreject, Preject
expr avquelength

expr thruput, utilization

end

139

Appendix A

SHARPE Data Structure

Important data structures of SHARPE source code are listed here. Rectangles represent
instances of data types with the name of each datatype at the top of rectangles. These data
typesare structuresor unionsin C language. For the sake of saving space, only important
member field(s) are listed at the attribute field of each rectangle. Arcs represent pointers.
If an arc begins from arectangle, it isafield of the data type that the rectangle represents.

Rectangles are piled together to denote arraysin C.

140

100.96

Basic EXPRESSION Sample

A+B*C+A*100.96 stored asA BC* + A 100.96 * +

A B
eeT eel eel
Attribute: Attribute: Attribute:
ee type=ET_HEAD ee_next ee type= ee_next ee_type=
ET_SYMBOL ET_SYMBOL
» ee_info.param(or ee_info.param(or
symbol_index) symbol_index)
A
5 5
5 5
8 N 8
= !
P
eeT &Q < eel
Attribute: Attribute:
ee type=ET_ADD ee type=
ET_SYMBOL
ee_info.param(or
symbol_index)
A
B B
5 5
8 8
A
eel eel
Attribute: Attribute:
ee type= ee type=
ET_MULTIPLY ET_MULTIPLY
A
5 5
5 5
8 A 8
A
eeT eel eel
Attribute: Attribute: Attribute:
ee type= ee next ee type= ee next ee type=ET_ADD
ET_NUMBER ET_SYMBOL
ee info.value= < ee_info.param(or <
100.96 symbol_index)

141

Expression List:

Advanced Expression |

EXPression, expression, expression, ...
OR

expression
expression

eel

Attribute:
ee next

ee_nextarg

Buildin Function Node:
CDF(gspn_g, nodel; a, b ¢)

eel

Attribute:
ee type=ET_CDF

ee firstarg

eel eel

Attribute: Attribute:

ee_next ee nextarg | ee next ee nextarg

> —
eel eel

Attribute: Attribute:

ee_type= ee_nextarg ee_type=
ET_PLACE_OR_TRANS ET_EXPRESSION
ee_info.sys index >

ee_next

ee nextarg

N

5 3
\G\ 3
e 0 3
Q
[°]
3
el
'S5
expresion list %
eel eel
- ee nextarg -
Attribute: Attribute:
ee next

name_exprT

Attribute:

142

Advanced Expression 11

User Defined Function

argument list
eel eeT eeT
- ee firstarg - -
Attribute: Attribute: Attribute:
ee_type= ee_next ee nextarg | ee_next ee nextarg
ET_FUNCTION
ee info.symbol_inde > P rrars
X
epsilon epsilon_id expression
eel eeT eeT
ee firstarg
Attribute: Attribute: Attribute:
ee type= ee type= ee nextarg ee next
ET_EPSILON ET_EPSILON
ee info.input_str ee_info.epsilon_pt >
bind simple_var expression
OR
bind
<simple_var expression >
end
eel eel eel
- ee firstarg - -
Attribute: Attribute: Attribute:
ee type=ET_BIND ee type= ee_nextarg ee next
ET_SYMBOL
ee _info.symbol_inde
X
(o))
8
5}
5
8
eel eel
Attribute: Attribute:
ee nextarg €e_next ee nextarg e type=
ET_SYMBOL

-«

ee info.symbol_inde
X

143

Advanced Expression |11

loop simple var, low, high {, increment}

<<loop > | <while_ statement >|<bind simple var expression >|<expr expression {, expression ...} >|<epsilon e typeexpression >>

end

eel

Attribute:
ee type=ET_LOOP

ee info.param

eeT paramT
ee firstar P
- g Attribute: Attribute:
» ee type=
ET_PARAMETER
*,
%‘&
fleg
eel
Attribute:
ee next
(2]
8
&
5
8
A
eel
Attribute:
ee next
o
8
&
5
8
A
eel
<loop > .
. P . . Attribute:
<bind simple var expression > ee nextarg ee next

<expr exression {, exression ...} >
<epsilon e type expression >
<name name expression >
<name expression >

144

low

high

increment

Advanced Expression |V

Extended Expression |

---- if- statement

if ((#(procup) == 0) and (#(memup) == 0) and (#(swup) ==0))

0
dsaif (......)
<<if- statement >|<bind simple var expression >|< expression >|<epsilon e typeexpression >>
else
<<if- statement >|<bind simple var expression >|< expression >|<epsilon e typeexpression >>
end
eel eel eel
- ee bool - -
Attribute: Attribute: Attribute:
ee type=ET_IF ee type=ET_AND ee next ee type=ET_HEAD
A
2
p = o
p 8 8
8 i #(swup)==0 !
eel eel eel
Attribute: Attribute: Attribute:
0 ee type= ee type=ET_BOOL ee type=ET_BOOL #(proup)==
ET_NUMBER
A
AR
2
ee nextarg o ‘2 (8 - -
g % ‘ & 8
g 5 5
=
[8 8
8
eel .
Attribute: eeT eeT
- ee next
ee type=ET_HEAD Attribute: - Attribute:
ee type=ET_AND ee type=ET_BOOL #(memup)==0
eel eel
Attribute: Attribute:
» ee type=ET_ELSEIF ee_nextarg ee nextarg ee type=ET_ELSE

&
oo, y

Extended Expression |1

#(procup)==0

eel

Attribute:

ee type=ET_EQU |
ET_NOTEQU |
ET_LESS|
ET_NOTLESS|
ET_GREATER |
ET_NOTGREATER

Advanced Expression V

ee firstarg

eel

9

ee nextar

A

eel

Attribute:
ee type=
ET_NUMBER

ee next
ee next

eel

Attribute:
ee type=ET_HEAD

146

Attribute:
ee type=ET_MARK
ee_info.sys_index

Advanced Expression VI

Extended Expression |1
while (diff > 0.00001 and index < 100)
<<while- statement >
<loop >
<if- statement >
<bind simple var expression >
<expr expression {, expression ... }>
<expression >
<epsilon e typeexpression >>
end

---- while- statement

eel eel eel
- ee bool - -
Attribute: Attribute: Attribute:
ee_type= » ee_type=ET_AND ee next ee type=ET_HEAD
ET_WHILE
e
A
[o2]
5]
j4
=
8
|$B |ﬂg
=} >
2 2
y
eel eel
- ee next -
Attribute: Attribute:

ee type=ET_BOOL

ee type=ET_BOOL

A

index < 100

147

diff > 0.00001

Advanced Expression VI

Distribution Expression:
ZERO/INF (1)

WEIBULL (2)
GEN/CGEN/TGEN (3)
EXP/PROB/Used-defined (4)

u_num_dist
udistT
» ZERO/INF (1)
Attribute:
u_args
» WEIBULL (2
“s,
\Q’/\v -
symnodeT GEN/CGEN/TGEN (3)
Sl :
Attribute:
se_a sym
se b _sym t
= s k_sym Se_nex symnodeT
2| se_z;)_sym_c Attribute:
S Se.b_sym_¢ se a sym
pat se b_sym se next
se k_sym
se asym_c —
se b sym ¢
EXP/PROB/Used-defined (4)
y
eel
Attribute: argument list
ee type=
ET_DISTRIBUTION & 4
ee_info.symbol_index ~'Sarg eeT eeT
Attribute: Attribute:
s ee next ee nextarg | €e_next ee nextarg
T S

148

Symbol Table

symP symtab
Distribution Function:
symtab_entryT udistT
- sy_udist -
Attribute: Attribute:
_narne ------
sy _type=ET_DISTRIBUTION
sy_dist_type=DT_NUMBER |«
paramT
Attribute:
p_name p_next
p_value
User Defined Function:
symtab_entryT eeT
_eXp
Attribute: Attribute:
sy_name = —> ee nextarg
sy_type=ET_FUNCTION
sy_depfunc K e >
paramT
Attribute:
p_name p_next
p_value
var defined var expression
symtab_entryT eeT
_eXp
Attribute: Attribute:
_name

sy_type=ET_EXPRESSION

149

system_infoT

Attribute:
s name

s type= SKW_GRAPH

s paramlist
s multpath

System - Graph

system_infoP system_info

I* before topsort */ s node_info node_infoT node infoT
s names Attribute: Attribute:
S.num_names i_name="E." iname | e
S Size_names i_dist_type=DT_NO_DIST i_dist_type
S _SuCcessor
s count_pred
s lastnode Q
- o
BI
[* after topsort */ —
s node_info v
s size node_info nodeT
b Attribute:
dist namedistri-ep g
c
ol
y
node_infoT i udist udistT nodeT
Attribute: » Attribute: b Attribute:
i_name
i_dist_type
3
c
ol
. . n_id Y
exit name exit_type (except kofn) nodeT
n_id
7 b Attribute:
node_infoT
Attribute: <
i_name 4 aé
i_entry =NT_PROB | c!
NT_MAX |NT_MIN
n_id
exit name kofn expression, expression prob name name expression
i k_sym
eel
node infoT / node_infoT i_prob_sym eeT
EE— Attribute:
Attribute: v . Attribute: | ——— " Attribute:
i_name i_name
- 4
N sym
\ eeT 150
Attribute:

System - Block | Fault Tree| MFT

system_infoP system_info

system_infoT

Attribute:

S name

s type=SKW_BLOCK |
SKW_FTREE_REPEAT |
SKW_FTREE_NOREPEAT
s paramlist

s symbolic_kn

/* for SKW_FTREE_REPEAT */

s save last_in_map
s save lastnode

s _map

nodeT

Attribute:

|

i_transfer_index

»
"

s last_in_map

nodeT

Attribute:

Y s node info —»

node_infoT node infoT| || | nodé€ infoF” ~ |\ node infol\ | rrere
Attribute: Attribute:
i_name i name
i_dist_type=DT_ |i|dist_typesDT
NO_DIST NO_DIS$T
i_transferred_to= |ijentry=NT_MIN || ...
true INT_LMAX|
i_entry NT_KOFN||
NT_NM|IN |
NT_NMAX |
NT_NKOFN]|
NT_NO[T
8 =
3 g
A B A
nodeT udistT
Attribute: Attribute:
n_id
5
<
o
A
nodeT
Attribute: paraIIeI | SGI’IGSl and | or |
n_id kofn | nand | nor
5
<
c! transfer name name

basic | repeat | comp | not

151

System - Reliability Graphs

system_infoT S names
Attribute: wordT wordT wordT wordT
s_name_ Attribute: Attribute: Attribute: Attribute:
stype= T T,
| SKW_MARKOV |
SKW_SEMIMARK |
SKW_RELGRAPH | Y
SKW_PFQN |
SKW_MPFQN
s paramlist
D
\¢ N|
g
eg_repeat ————
Y »
s lastedge ' "
edgeT edgeT edgeT edgeT
v s edges Attribute: Attribute: Attribute: Attribute:
- eg_dist_type | YT eg_dist_type
eg_isRepeat ==
true ,
W&
N7 O
s map %y é}y
udistT
RS 2
o <& .El Attribute: -
< ~l
c
s last_in_map
A
nodeT nodeT nodeT nodeT
| Attribute: n_next Attribute: n_next Attribute: n_next Attribute:
4’ ------

152

System - Markov Chain*| Semi Markov Chain | PFQN* |
MPFQN*

* meansbasic or partial data structure

system_infoT s names
Attribute: R wordT wordT wordT wordT
s_name_ Attribute: Attribute: Attribute: Attribute:
stype= |
SKW_MARKOV |
SKW_SEMIMARK |
SKW_PFON |
SKW_MPFQN %{ 7
s paramlist N
g
v s lastedge >
edgeT edgeT edgeT edgeT
v s edges Attribute: Attribute: Attr i.bute: ______ Attribute:
eg_dist_type
2
& ®
&
S %
&/
for Markov | PFQN | MPFQN for SemiMarkov
eeT udistT
Attribute: Attribute:
Markov only:
$(i) node2 expression
eeT ee nextarg eeT ee nextarg
v s nodes » Altribute: » Attribute:
ee type= ee type=
ET_EXPRESSIO ET_EXPRESSIO
N ®ing, N
'00’77
< 2 n
% WMe
c .
8 i
A
eeT name_exprT ne_info.ne_expr eel
Attribute: Attribute: Attribute:
ee type= ne_type= ee type=
ET_EXPRESSIO ET_EXPRESSIO ET_EXPRESSIO
N g, N N
5
<
8 -
v expression
eeT name_exprT
Attribute: 153 Attribute:
ee type ne_type=
ET_NODE
ne_info.ne chars node2

System - Loop in Markov Chain

154

- s loop_nodes
system_infoT eeT eeT
- > - ee _nextarg - ee nextarg
Attribute: Attribute: Attribute:
S name ee type= ee_type= —_— rreees
s type= ET_LOOP_MAR ET_LOOP_MAR
SKW_MARKOQOV KOV_EDGE KOV_EDGE
s paramlist
s loop_probs < ee firstarg h
OR
s loop_rewards v
eeT ee nextarg eeT ee nextarg eeT ee nextarg eeT
Attribute: » Attributes: Attribute: » Attribute:
ee type=ET_PAR ee next ee next ee next
AMETER
ee info.param
f ee nextarg i
eeT ee next eeT ee next eeT
Attribute: Attribute: » Attribute:
ee type= ee_type= ee next
nextarg ET_MARKOV_E ET_MARKOV_E
. e DGE DGE
eel
Attribute: eeT
ee type= ;)
ET_LOOP MAR /;t{)'/?)‘;t:e' ee nextarg
KOV_PROB | iy >
ET LOOP MAR ETGEI\/:ARKOV_E
KOV_RATE ET _LOOP_MAR
o KOV_EDGE
8
? ee firstarg
| -
g o | }
eeT eeT ee nextarg eeT ee nextarg eeT ee nextarg eeT
Attribute: Attribute: Attributes: » Attribute: Attribute:
ee type= ee type=ET_PAR ee next ee next ee next
ET_LOOP_INIT_ AMETER
PROB | ee_info.param
ET_LOOP_REW
ARD_RATE v
- < ee _nextarg
o A
E eeT eel
g
EB| ee nextarg | Attribute: ee_next Attribute:
______ ee_type= ee next
<« ET_INIT_PROB >
|
ET_REWARD_R
ATE

System - Fast MTTF in Markov Chain| Semi-Markov

system_infoT

Attribute:

S name

s type=
SKW_MARKOQV |
SKW_SEMIMARK |
s paramlist

s mttf

A S sotA ——»

v ssF———

eeT ee nextarg eeT ee nextarg
Attribute: » Attribute: >
ee type= ee type=
ET_EXPRESSIO ET_EXPRESSIO
N N

eeT ee nextarg eeT ee nextarg
Attribute: » Attribute: >
ee type= ee type=

ET_EXPRESSIO
N

155

ET_EXPRESSIO
N

System - PFQN after mtopsort()

s lastnode
y
system_infoT mnode_infoT mnode_infoT mnode_infoT
s mnode_info

Attribute: - - Attribute: Attribute: Attribute:
S name » i_name i_name | i_name
s type= SKW_PFQN
s paramlist

stn_infoT eeT

- st_sym_noof_servers -
Attribute: Attribute:
st_type » ee next

st_service rate

for amultiple server station, # of servers

eeT ee nextarg eeT ee nextarg eeT ee nextarg

Attribute: » Attribute: » Attribute:
ee next ee next enext | TR

for LDS (Load Dependent Server)

156

S Ng

s stn_|

System - MPFQN after mtopsort()

) of_chains

list

system_infoT
Attribute:
S name mnode_infoT mnode_infoT mnode_infoT
s type=SKW_MPFQN
s paramlist Attribute: Attribute: Attribute:
s no_of_stations i_name i_name | i_name
©
Q&
>
&
%/
——i_mstation_info
ch_lastnode
chain_infoT J
Attribute: Ym -
N
ch_edges OOf\C‘Ug
— Lgn
chain_infoT eeT
Attribute: Attribute:
ch_edges ee next
chain_infoT
Attribute:
ch_edges mnode _infoT mnode _infoT mnode infoT
chain_infoT Attribute: Attribute: Attribute:
Attribute: i_name i_name | . i_name
ch_edges &
&e/
chain_infoT N
C\;(\/
Attribute:) on inf
———i_mstation_info ———
ch_edges - - ch_lastnode
chain_infoT J
- L«
Attribute: h\%/n; -
\noof
ch_edges ~Custg
~Gn
eel
------ | Attribute:
ee next c
'3
chain_infoT 5l
- k]
Attribute: o
ch_edges | . st_sym_service rate f,l
mstn_infoT » eeP eeP eeP eeP
> Attribute: Attribute: | Attribute: | Attribute: | seeee- Attribute:
st_type
3
5
4] 4
mstn_infoT st_next
- -,
Attribute:
st_type

157

System - GSPN | SRN

system_infoP system_info

s lastplace

158

Attribute:

:
lace_intoP place_inf g
place_Intor place _Into I
2
place_infoT place_infoT place_infoT place_infoT place_infoT place_infoT
Attribute: Attribute: Attribute: Attribute: Attribute: Attribute:
place name place name place name place name place name | ¢ place name
init_token
K .
. g, 1
T N
5 s
= eeT
(/)l .
Attribute:
y >
1]
&
. . |
trans_intoP trans_info £
c
trans_infoT trans_infoT trans_infoT trans_infoT trans_infoT trans_infoT
Attribute: Attribute: Attribute: Attribute: Attribute: Attribute:
trans_name | trans name trans name |trans name |trans hame | trans_name
trans_type trans_type trans_type trans_type trans_type trans_type
place_index place index place index trans rate or |place_index place_index
dependent dependent dependent _prob dependent dependent
A A
«60 8 a
s> 5 8
o7 5 o
’\\é\ (b& 2 =
&7 3 c
) 5/ S
. S
s firsttrans S
eeT
Attribute: s lasttrans
system_infoT arcPN arcPN
) Attribute: i Attribute: Attribute:
S name place_index place index | ..
s type=SKW_GSPN | multiplicity multiplicity
< SKW_SRN >
s paramlist (}\Q\
\

System - PMS

system_infoT

pms_infoT
Attribute:

s name

s type=SKW_PMS
s paramlist

s symbolic_kn

s thound

oli 1

pms_nodeT

s pms_info Attribute:

phaselist

MAX_PHASE_NUM=100
nphase
2

3 —tnphase —l

pms_nodeT

pms_nodeT

pms_nodeT

99

Attribute:

Attribute:

Attribute:

Attribute:

pms_nodeT

Attribute:

pms_nodeT

Attribute:

yopui s/

~ O’(//_

system_infoT

Attribute:

s coherent !=false
s paramlist = P_NULL

Q}‘,bo

eel

Attribute:

159

Appendix B

SHARPE GUI Documentation

Thisappendix isa partial SHARPE GUI document. Thefirst pageisthe object model [13]
of the GUI program. The second is the window layout of the main window. The third is
the object model of the analysis window. The last is the window layout of the analysis

window.

160

wonesadp

E— RUT TR Y smonesady moneaaley oy Ty smoneaadpy moneaadey sy
: Uy ST ngUENY 2nquIY Uy LY ngLENY LY
PPONT
HELGLE] FPRONOV [Py [PPOpsaig 19PN P 1PN I [FPONHIEN [aperyedsry 1O
‘mdag ‘Bnpdgeita iy e sund-rilag ‘e “ubpdpyeia it eiag udsd eian ey eian

JEISQE R I0IEP]EA

FITTRH TR mc_..__.!.r._un [apogns
JO NEpUL A pul . PPpYQnEYaaEas
WAL YErgia PUBRPpagNgRE KOs B U
[POy R AL NERauad PRIsgE 7 Apojaejesaa
(2ed yau 2y 2as) [MURJPEpONqNSIPE [PPOUINS STYY YW STE0EsT
s didod © <=« dndo gases grapegyeday [urd) wins CjaRaEgE g e
e T SIS o uonsung agsge) [y aLes
UCHEIR TR UL UAYT €0 SHOLUN) Bonae uSrsse JnaEge [Fpopyume
©spuaodniod [y 0 SEENI Y SN gy ey ey
RITTTTTER 5
SIOQULES “SpaTta J0 1E]
aiined peaw s wo waons 51 onade] siuauodues [0 LML
spaunnd (apoawg s

Funurewos jf SMIEJIOUE AqUISEH rasge CpEpopggngEiag el
: ©
ALy L] 3

AT PAVIOIN] UL APOY [FTIY [T auneyy awes POy ERg Hgnd SIpOMnSY HGEIGETE qnd

NONEIOTS Y WO
adls - suerjiesado [apowgns
3000 SI AN 01 venRsaxradIEgS S| I
¢ awes gsdpeuyeday SOUTSUN UE)3 P00 SN (IND 3 2iepdn) auntiJRpoIALINY sunpyesmlo jquis
AR NEVIVIRL)0 aFRpTE T TR e PUT PPOINALING 105 [/ PPONIFERIIILIN S i
S[ApA AN HE Aessuad i unysIs e SPPOIY O [3pouu ppe 4y Japayy ety ppe PP
PP s Bmeemnd
P AL Tun AL UL JIAES uado
pur ppopyleRayppeuEyERay (e Cppepyeday T asuasagaguado I ppow iy IPpepyu
mau Fopep uado 1afoud g 1aafoaguadia Oaggune _ﬂ_ﬂ: AN A - ppopyuado e s Epepy sy
UG MU 1 YO PLT ") | :__u_wn_m{mm T o wau jy ppojyEEay
ACOPULS) IS 5003 ff AngupEpy ey AvguyEw JeguiEpyEiay ’ ’ wopmiadgy SPPOINY GEINETH oy
g Ry : e FEI] IS0
ALY Y GO MU A I0SE] LY MU APORINALING UL RpopyrEay i TuEpSUa HAsTH
bl Ll) t PpepIuaLInD ey TS| OIS iy ogquisgy e
ALY LI L
ML PARIOIN] PR UIE)Y TRy [rda eSS Ppopy Ry R

2IMOAIYIIY JISeg
[21OATYIY SSE[D) TND AdAVHS

WULERET o [-2 M2 L ¥

SWERIJ[SPOIN[BSY [e3a1 ul JnoAeT siusuodwo)) [ND
[T 2IMIAYDIY SSB[) [ND HdIVHS

UL
LIy

ubygindhingy e

Iy ooy RIS LTES Ty oy RU TR Ty oy HITTI TR g
ALY MLy AN nqUnY ALY EnQUEY LY
ydesnypaynding PHSEER foy] ubydysginding 1

oy cndngy e ‘[eda sugindmgy edag e nchingy eda ‘eda mpgmchngy eda udsopndhingy [eda
SIEA[EUn
B 3poa doams nding *oensge i ynadaeygs
SR [ORRUAT HOEQEAT pU) i [RUIEES B EERL
Sadurd 24 Wned wmg i CLIRIR] M3
ey ndyngyyaa
RUTI TR Ty

paagsge andingy g
RITTVTTEN g
o yndy
LA LY IR, au.,_“..-
powgns ppoqnEeiay e
IFppang Sy eia bl el
. el b _ﬁ__nfjam_ﬁﬁ
it o) Funpaoao g g s gy ey
ogeadg _.w_z,uu“_»..ﬁ. y suopauny wopae spuaneduo’) 115
e ¥

uniesndpy
LIy NIy

w ey i

UL PO AR ST A ey [T ay peda

QwIRIJSISA[euY [BSay 852l SSe[D)
[T 2I0AIY2IY SSe[)) [N1D dddVHS

HUTITTRY g
LWL

1fimdingy e

163

welsIsA[euy [B3y B2 ul Inoke] syuauodwo) [ND
AL RIMOAYDLY SSe[D) IND HdAVHS

Appendix C

SHARPE Examples

Here, more SHARPE examples are listed.

C.1 Fault Tree Examples

C.1.1 SHARPE File— ftree n/examplel2

xExample 12

xAuthor Luo Tong

xTo test the MVI in fault tree with inverse gates
x TEST_KEY sysunrel: 3.0000e—01

x version using only repeated components
ftree ft

repeat a prob(0.3)
repeat b prob(0.4)
basic ¢ prob(0.8)
anddab

nandf ad
oredb

orgfe

andhag
norigc

orzhi

end

var sysunrel pzero(ft)

165

expr sysunrel

end

C.1.2 SHARPE File— ftree n/xnkofnl

ftree knl

repeat r exp(3.2)
basic a exp(7)

basic b exp(4)

basic ¢ exp(5)

basic d exp(11)
kofnabcd 2,4, abcd
not nabcd abed

and top nabed r

end

ftreekn2

repeat r exp(3.2)

basic a exp(7)

basic b exp(4)

basic ¢ exp(5)

basic d exp(11)
nkofnabed 2,4, abcd
and top abed r

end

cdf(knl)
cdf(kn2)

end

166

C.1.3 SHARPE File — ftreebddl/mincut

ftree dsp70
basic a prob(q)
basic b prob(q)
basic ¢ prob(q)
basic d prob(gl)
ort3ab
andt1t3d
transfer d1d
andt2cdl
ortOt1t2

end

bind
q0.25
g1 0.30

end
mincuts(dsp70)

expr sysprob(dsp70)

ftreef_long

basic a0123456789012345678901234567890123456789 exp(3.1)
basic b exp(4.2)

basic ¢ exp(3.7)

basic d exp(7.2)

basic e exp(2)

basic f exp(1.2)

basic g exp(0.8)

basic x exp(3)

basicy exp(4)

167

transfer el e

orBEbe

and A a0123456789012345678901234567890123456789 BE

kofn K1 1,3, a0123456789012345678901234567890123456789 X y
kofn K2 2,4, g ¢ d a0123456789012345678901234567890123456789
orEGelg

orFCfc

and EEG FC

ortopAK1K2E

end

mincuts(f long)

expr mean(f_long)

ftree f_repeat (k1,k2)
basic aexp(3.1)
basic b exp(4.2)
basic ¢ exp(3.7)
basic d exp(7.2)
basic e exp(2)
basicf exp(1.2)
basic g exp(0.8)
basic x exp(3)
basicy exp(4)
transfer el e
orBEbe

and A aBE
kofnK1k1,3,axy
kofnK2k2,4,gcda
orEGelg

orFCfc

168

andE EG FC
ortopAK1K2E

end
mincuts(f _repeat;1,2)

expr mean(f repeat;1,2)

end

C.1.4 SHARPE File— ftree bdd2/impt

verbose on

ftree tree0(x)
repeat ¢l exp(0.1)
basic c2 exp(0.2)
basic ¢3 exp(x)
basic ¢4 exp(0.1)
and andl cl c2
and and2 c3 c4

or top andl1 and2

end

bdd off
cdf(tree0;0.3)

bdd on

expr bimpt(2; tree0, ¢1;0.3)
expr bimpt(2; tree0, c1;0.2)
expr bimpt(2; tree0, ¢1;0.1)
expr bimpt(2; tree0, ¢1;0.3)
expr cimpt(2; treeQ, c1;0.3)

169

expr simpt(tree0, c1;0.3)

cdf(tree0;0.3)

end

C.2 Examplesof Reliability Graphs

C.21 SHARPE File— relgraphbdd2/mincuts

relgraph bridge
12exp(l)
13exp(2)

23 exp(3)
32exp(2.3)
24 exp(4.7)
34 exp(5)

end
mincuts(bridge)

end

C.2.2 SHARPE File— relgraph/minpath

bdd off

relgraph bridge0
12 prob(q)
1 3 prob(q)
2 3 prob(q)

170

3 2 prob(q)
2 4 prob(q)
34 prob(q)

end

bind
q0.1

end
minpaths(bridge0)
expr 1—sysprob(bridge0)

end

C.23 SHARPE File— relgraphbdd2/reltest1

format 8

relgraph bridge0
12 prob(ql)

2 4 prob(g2)

1 3 prob(gql)

34 prob(g2)
bidirect

2 3 prob(g3)

end

bind
g10.01
2 0.015
03 0.02

171

end

expr sysprob(bridge0)

expr simpt(bridge0, 3, 4)
expr simpt(bridgeQ, 1, 2)
expr ssimpt(bridge0, 2, 4)
expr simpt(bridge0, 2, 3)
expr simpt(bridge0, 3, 2)
expr bimpt(10; bridge0, 3, 4)
expr cimpt(10; bridge0, 3, 4)

end

C.3 Examplesof Fast MTTF [6]

C.3.1 SHARPE File (Markov Chain) — fastmttf/m6

format 8
bind lambda 0.1
bind mu 1

markov t2 readprobs
6.0 5_1 6«xlambda

5_15.0 1«lambda
5.1 4_2 5«lambda

5.04_1 5«xlambda
506.0mu

4_2 3_3 4xlambda
4.2 41 2xlambda

172

4_1 32 4xlambda
4.1 4.0 1xlambda
4151mu

4.0 3_1 4xlambda
4.050mu

3.3 24 3«lambda
3.3 3.2 3xlambda

3.2 2_3 3«lambda
3.2 3_1 2«lambda
3.242mu

3.1 2_2 3xlambda
3.1 3.0 1«lambda
3.14.1mu

3.0 2_1 3xlambda
3.04.0mu

2.4 1.5 2«xlambda
2.4 2_3 4«xlambda

2.3 1.4 2xlambda
2.3 2_2 3xlambda
2.33.3mu

22 1_3 2xlambda
2.2 2_1 2xlambda
2.23.2mu

173

2.1 1.2 2«xlambda
2.1 2.0 1xlambda
213 1mu

2.01_1 2«xlambda
203 0mu

1.5 0.6 1xlambda
1.5 1.4 5xlambda

1.4 0.5 1xlambda
1.4 1_3 4xlambda
1424mu

1.3 0.4 1xlambda
1.3 1.2 3xlambda
1323mu

1.2 0_3 1xlambda
1.2 1.1 2xlambda
1222mu

1.1 0_2 1xlambda

1.1 1.0 1xlambda

1121mu

1.0 0_1 1xlambda
1.020mu

0.6 0.5 6«lambda

0.5 0_4 5«lambda
0515mu

174

04 0_3 4«lambda
0414mu

0_3 0_2 3«lambda
0.31.3mu

0_2 0_1 2«lambda
0.21.2mu

0111mu
0_1 0.0 1«lambda

0010mu

end

601

end

fastmttf

6.0 READA
24 READA
x3_3 READA
0.0 READF

end

expr fastmttf(t2)

end

C.3.2 SHARPE File (Semi-Markov Chain) — fastmttf /semit

semimark abc2

175

m1 m2 exp(1.2)
m2 m3 exp(0.8)
m1lm3 exp(1.4)
m2 m1 exp(0.3)
m3 m1 exp(1.5)
m3 m4 exp(2.5)
m4 m1 exp(1.0)
end

ml1l

end

fastmittf

ml READA
m2 READA
m3 READF

end

expr fastmttf (abc?)

end

C.4 SRN Example

C.4.1 SHARPE File— srn/mtta

* Trandlate from sensi.c of SPNP6
format 8
bind

thinktime 1
CPUrate 0.01

176

ratel 0.04

rate? 0.05
TK 2
exit_prob 0.01

outl prob 0.30
out2_prob 0.69
lambda 1.0/CPUrate
theta 1.0

end

srn mttatest()
* Places
think O
CPU TK
decide O
usel O
use2 0
end

* Timed transitions

go placedep think 1.0/thinktime

CPUdone ind lambda

donel ind 1.0/ratelstheta
done2 ind 1.0/rate2«theta

end

* Immediate transitions
exitl ind exit_prob
outl ind outl_prob
out2 ind out2_prob
end

* [nput arcs

think go 1

CPU CPUdone 1

177

decide exitl 1
decide outl 1
decide out2 1
usel donel 1
use2 done2 1
end

x Output arcs

go CPU 1
CPUdone decide 1
exitl think 1
outl usel 1

out2 use2 1
donel CPU 1
done2 CPU 1
end

* Inhibitor arcs

think go TK

end

func refunc()

if (#(think) == TK)
0

else

1

end

end

expr srn_cexrinf(mttatest; refunc)

expr mtta(mttatest)

end

178

Bibliography

[1]
[2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

[10]

[11]

B. Akers. Binary decision diagrams. |EEE Trans. Computers, 27(6):509-516, 1978.

H. Choi and K. S. Trivedi. Approximate performance models of polling systems
using stochastic Petri nets. In Proceedings of IEEE Infocom 92, 11th Annual Joint
Conference of the IEEE Computer and Communication Societies, Florence ltaly, May
1992.

G. Ciardo, J. Muppala, and K. S. Trivedi. Analyzing concurrent and fault-tolerant
software using stochastic reward nets. Journal of Parallel and Distributed Comput-
ing, 15:255-269, 1992.

W. Fischer and K. Meier-Hellstern. The markov-modulated poisson process (mmpp)
cookbook. Performance Evaluation, 18(2):149-171, 1992.

G. Haring, R. Marie, R. Puigjaner, and K. S. Trivedi. Loss formulae and their op-
timization for cellular networks. 1EEE Transactions on Vehicular Technology (to
appear), 1999.

P. Heidelberger, J. K. Muppala, and K. S. Trivedi. Accelerating mean timeto failure
computations. Performance Evaluation, 27 28:627—645, Oct. 1996.

D. Hong and S. S. Rappaport. Traffic model and performance analysis for cellular
mobile radio telephone systems with prioritized and nonprioritized handoff proce-
dures. |EEE Trans. eeh. Technol., 35(3):77-99, Aug. 1986.

C. Y. Lee. Representation of switching circuits by binary-decision programs. Bell
System Technical Journal, 38:985-999, July 1959.

Y. B. Lin, S. Mohan, and A. Noerpel. Queueing priority channel assignment strate-
gies for pcs hand-off and initial access. |EEE Trans. on \ehi. Tech., 43(3):704—712,
Aug.

M. Ajmone Marsan, G. Balbo, and G. Conte. A class of generalized stochastic petri
nets for the performance evaluation of multiprocessor systems. ACM Transitions on
Computer Systems, 2:93-122, May 1984.

I. Mura, A. Bondavalli, X. Zang, and K. S. Trivedi. Dependability modelling and
evaluation of phased mission systems: aDSPN approach. In Proc. IFIP International
Conference on Dependable Computing for Critical Applications (DCCA-7), pages
299-318. San Jose, Cdlifornia, Jan. 1999.

179

[12] C. A. Petri. Kommunikation mit Automaten. PhD thesis, University of Bonn, Bonn,
Germany, Jan. 1962.

[13] Dr. James Rumbaugh. OMT Insights. SIGS Books, 1996.

[14] R. Sahner, K. S. Trivedi, and A. Puliafito. Performance and Reliability Analysis of
Computer Systems: An Example-Based Approach Using SHARPE Software Package.
Kluwer Academic Publishers, 1995.

[15] W. Stewart. Introduction to Numerical Solution of Markov Chains. Princeton Uni-
versity Press, Princeton, N.J., 1994.

[16] K. S. Trivedi. Probability and Satistics with Reliability, Queuing, and Computer
Science Applications. Prentice-Hall, Inc., Englewood Cliffs, 1982.

[17] W. Xie. Markov regenerative process in sharpe. Master’'s thesis, Duke University,
Durham, U.S.A., 1999.

[18] X. Zang. Dependability Modeling of Computer Systems and Networks. PhD thesis,
Duke University, Durham, U.S.A., 1999.

180

