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ABSTRACT

This paper discusses the modeling tool called SHARPE (Sym-
bolic Hierarchical Automated Reliability and Performance

Evaluator), a general hierarchical modeling tool that an-

alyzes stochastic models of reliability, availability, perfor-

mance, and performability. It allows the user to choose

the number of levels of models, the type of model at each

level, and which results from each model level are to act as

which parameters in which higher-level models. SHARPE

includes algorithms for analysis of fault trees, reliability

block diagrams, acyclic series-parallel graphs, acyclic and

cyclic Markov and semi-Markov models, generalized stochas-

tic Petri nets, and closed single- and multi-chain product-

form queueing networks. For many of these, the user can

choose among alternative algorithms, and can decide whether
to get a result in the form of a distribution function (sym-

bolic in the time variable) or as a mean or probability.

SHARPE has been useful to students, practicing engineers,

and researchers. In this paper we discuss the history of

SHARPE, give some examples of its use, and talk about

some lessons learned.

1. INTRODUCTION

Symbolic Hierarchical Automated Reliability and Perfor-
mance Evaluator (SHARPE) is a software tool that accepts
and solves stochastic models of reliability, availability, per-
formance, and performability. The first version, developed
as a part of Robin Sahner’s Ph.D. thesis [41] was distributed
in 1986. It provided a basic structure for doing analysis of
hierarchies of models. The analysis was “semi-symbolic” in
the sense that the results were distribution functions sym-
bolic in the time variable ¢, rather than mean values or prob-
abilities at specific times. The user could decide what model
type to use at each level; SHARPE provided a language for
specifying which results from lower-level models were to act
as which parameters in the higher-level models. SHARPE
has catered to three groups of users: practicing engineers,
researchers in performance and reliability modeling, and stu-
dents in science and engineering courses. The first company
to adopt SHARPE was Digital Equipment Corporation [17].

The SHARPE program is useful both as an aid in learn-
ing about modeling [40] and as a tool for use in modeling
real systems [2, 5, 11, 19, 43, 45, 46, 48]. Its applications
have spanned computer systems dependability, network per-
formance [6, 10, 23], wireless handoff [8, 26], aerospace relia-
bility [53], space system reliability /availability [5], real time
systems [1, 32, 18], railroad control systems, workflow sys-
tems [4], inspection-based preventive maintenance [50] and
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so on. It has been used to model reliability[3, 39, 38|, per-
formance [6, 10, 26, 30, 35, 38|, availability [24, 58, 59],
performability [21, 25], security[27], and survivability [13,
20]. In this paper, we will give some history of the work on
SHARPE, discuss a couple of examples of its use, and talk
about lessons learned.

2. SHARPE DEVELOPMENT

The original SHARPE model types were fault trees, relia-
bility block diagrams, series-parallel acyclic directed graphs,
and Markov and semi-Markov models. Since 1986, many dif-
ferent people have made enhancements to SHARPE, includ-
ing new model types, solution algorithms and types of mea-
sures. These are summarized in Table 1. A book was pub-
lished in 1996 on the theory and applications of SHARPE
[42].

During the mid to late eighties, development work on
HARP [9], SAVE [12], SHARPE and SPNP [7] were pro-
ceeding concurrently in our research group at Duke and
hence there has been a natural overlap in the engines of
these packages, although each is unique in its own way. One
example is the algorithm for the steady state solution of
Markov chains, written by Phil Chimento, which is shared
by SAVE, SHARPE and SPNP [7]. Another is the numerical
transient solver for Markov models, implemented by Jogesh
Muppla in both SHARPE and SPNP [31].

In addition to shared development, SHARPE has been
incorporated in other tools. For instance, it is one of the
engines in Boeing’s Integrated Reliability Analysis Package
[36].

There are extensions of SHARPE other than those that
became part of the SHARPE package: non-product-form
queueing networks, response time distribution in such net-
works (both implemented by Varsha Mainkar in her PhD
thesis [28]), connection to Mathematica for additional sym-
bolic analysis, a phase type-fitting algorithm by Manish
Malhotra [29], statistical routines by A. V. Ramesh, and
many more.

In 2005, based on Boeing needs, a new algorithm for re-
liability graph analysis was added to SHARPE by Dazhi
Wang as a part of his PhD thesis [53]. This is an efficient
algorithm for reliability upper and lower bounds and hence
enables the SHARPE user to solve very large models. It was
used to carry out the reliability analysis of a Boeing 787 Cur-
rent Return Network for the purpose of certification by the
FAA. Boeing has submitted the algorithm for a patent [55].

In addition to new models and algorithms, we have in-
creased the power of the specification language. The use of
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Figure 1: A task graph with a cycle and its exact decomposition.

SHARPE Enhancements Authors Year
closed single-chain product- | Jogesh Mup- | 1987
form queueing network pala
generalized stochastic Petri | Jogesh Mup- | 1988
net (GSPN) model pala
reliability graphs and re- | Malathi Veer- | 1988
peated events in fault trees | araghavan

[51]
multichain PFQN Varsha 1991

Mainkar
improvement of fault tree al- | Tong Luo [22] | 1993
gorithm
semi-symbolic  solver for | A. V. Ramesh | 1995
phase-type Markov chains [37]
algorithms for fault trees | Xinyu Zang | 1999
based on binary decision di- | [60]
agrams
factoring algorithm for fault | Xinyu Zang 1999
trees
multi-state fault trees X. Zang [60 1999
repeated edges in relgraphs | X. Zang [60 1999
phased-mission systems X. Zang [60 1999
Markov regenerative pro- | Wei Xie [57] 1999
cesses
fast MTTF algorithm for | Wei Xie [14, | 1999
Markov chains and semi- | 57]
Markov chains
stochastic Reward Nets Hu Pan [33] 2001
steady-state MTTF com- | Dazhi Wang | 2004
putation for combinatorial, | [52, 54]
Markov and semi-Markov
models based on binary de-
cision diagrams
several non-exponomial dis- | Hiroyuki Oka- | 2006

tributions added to MRGP

mura

Table 1: SHARPE enhancements

a shorthand for specifying loops in Markov models, imple-
mented by Robin Sahner, sometimes obviated the need to
use GSPNs to express structured Markov models. In 2001,
flex and bison (advanced versions of lex and yacc) were used
to reconstruct the SHARPE parser in a backward compat-
ible way [33]. Hu Pan extended the SHARPE language to
allow for control statements such as “if” and “while” so that
fixed-point iteration between sub-models can be carried out
[26, 44].

When new algorithms were added to SHARPE, the exist-
ing algorithms were usually left in place. This sometimes
lets users choose between multiple algorithms, and between
getting an answer symbolic in the time variable or a numer-
ical result for a particular value of ¢, or a mean. Sometimes
it is useful to use results from different algorithms for the
same model, or different kinds of model decomposition for
the same problem, to cross-check the results.

When SHARPE was first written, we only had dumb ter-
minals (and we walked 6 miles to school, uphill both ways).
SHARPE read its model specification from a file and wrote
results as text to standard output. It also had an inter-
active interface, printing prompts and accepting keyboard
interface. This was useful for demonstrations, trying out
very simple models, and providing a reminder of the syn-
tax. Serious work was always done non-interactively, some-
times by writing a program to generate the text input for
a particular model. Once graphical interfaces, and portable
languages for writing them, became common, SHARPE was
given a GUI This was done in 2000 by Christophe Hirel [15].

3. EXACT MODEL DECOMPOSITION

When learning about modeling, SHARPE is useful in un-
derstanding the advantages of model decomposition. When
modeling performance, if a task graph has no cycles and
is series-parallel, the analysis of the model is straightfor-
ward and efficient. But if the graph has cycles or non-series-
parallel pieces, the analysis is much more difficult.

It is possible to model the entire system with a Markov
chain, but that makes the model much larger and more prone
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Figure 2: Input for cyclic graph.

to numerical error during analysis. A GSPN or a SRN-type
Stochastic Petri Net model would be smaller, but these are
often hard to construct properly, and it would not reduce
the problem of numerical error. Instead, using SHARPE,
we can model each cyclic or non-series-parallel piece with a
Markov model (or a Petri net, or any other of the supported
model types), and replace that set of tasks with one node
representing the whole set.

Figure 1(a) (from [42]) shows an example of that. The
time-to-completion distributions for the nodes are not shown;
the distribution for each node n is the exponential distribu-
tion with parameter ™. We can isolate the cyclic part of
the graph (tasks 3 and 6) and model it using the Markov
chain shown in Figure 1(b). We can replace the cyclic part
of the graph in 1(a) by a single equivalent task whose time-
to-completion distribution is the time-to-absorption distri-
bution of the continuous-time Markov chain in Figure 1(b).
The new upper-level graph is shown in Figure 1(c). This
method yields an exact solution.

Figure 2 shows part of a file for input to SHARPE for this
model. After the comment “time-to-completion”, we assign
a time-to-completion distribution function to each task in
the upper-level model. For all tasks except the composite
task 3-6 this is the same exponential distribution as for the
original model. We assign to task 3-6 the distribution of the
time to reach absorption in the Markov chain inner.

When all the time-to-finish distributions are exponential,
it is possible to rewrite the entire graph as a Markov chain.
This one is not too big to be analyzed, and provides a good
consistency check. It also shows the value of having a tool for
decomposing models. The complete Markov chain contains
16 states and 32 transitions. It took us over a half hour to
set it up correctly by hand; the two-level model took less
than five minutes to set up. The hierarchical model took
about 0.3 seconds to solve as opposed to 1.9 seconds for the
complete Markov chain.

4. EXPONENTIAL POLYNOMIALS

Where we assigned the exponential distribution above, we
could have used any distribution that had exponential poly-
nomial (”exponomial”) form [42], being composed of sums
of terms of the form at®e®, where k is an integer and a and b
are real. Examples are the exponential (F/(t) = 1—e~**), Er-
lang, hypoexponential and hyperexponential distributions.

Exponomials are easy for programs to represent and ma-
nipulate. They are closed under most of the operations used
by the SHARPE model analysis algorithms: addition, multi-
plication, differentiation, integration, maximum, minimum,
convolution, and probabilistic sum. The semi-numerical anal-
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Figure 3: Top Level Fault Tree Model

ysis ([37]) of Markov chains with cycles and absorbing states
(phase-type chains) sometimes gives rise to functions with
terms like aze™'sin(t), but these can still be written as ex-
ponomials, if we allow complex values (occuring in conju-
gate pairs) for a and b. This is a remarkable feature of
SHARPE, and provides large benefits to Markovian and
non-Markovian analysis.

Not every distribution function of interest has exponomial
form. An example commonly used in reliability modeling is
the Weibull distribution,

1l,c

W(t,b,c)=1—e" 5",

Exponomials allow e* but not et

For non-state-space models, such as fault trees, SHARPE
allows such distributions. Their presence precludes doing a
semi-symbolic analysis, but SHARPE provides a numerical
solution, providing probabilities for particular times ¢ upon
request. The Weibull distribution is one of many useful
distributions available as built-in functions in SHARPE.

For state-space models, non-exponomial distributions can
be approximated with exponomials [29]. If an exponomial
corresponds to a phase-type distribution, we can insert it
into a state-space model to obtain an approximate Markov
model with an expanded state-space [47]. An alternative is
to use either a semi-Markov model or a Markov regenerative
process (MRGP) [8, 57, 59].

5. SHARPEAPPLIEDTOAREAL SYSTEM

SHARPE was used in the reliability and availability anal-
ysis of the SIP (Session Initiation Protocol) implemented on
an IBM WebSphere [49]. It models a SIP service consist-
ing of the WebSphere Application Server and a proxy server
running on IBM BladeCenter hardware. This configuration
provides high availability by using hardware and software
redundancy and escalated levels of recovery. A multi-level
SHARPE model can be used to predict the system availabil-
ity. The top level is a fault tree (shown in Figure 3) whose
nodes represent all of the software and hardware failures.
At this level, we capture the system structure that tells us
whether the whole system is available given the state of the
software and hardware subsystems.

Some of the hardware subsystems can be broken down into
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more detailed fault trees. In [49], these were included in the
top-level fault tree model, but they could also have been
separated into mid-level models. Which to choose depends
on the nature of the system, the complexity of the models
at each level, the modelers’ preference, and the behavior of
the analysis algorithms. One of the advantages of SHARPE
is that it leaves these decisions up to the user.

Some subsystems represented by fault tree leaves [44] can
have states where the system is up but with some com-
ponents non-operational and undergoing repair. Failures
are sometimes followed by successful reconfiguration (“cov-
ered”) but sometimes bring the system down. Such systems
are not easily modeled with fault tees, but can be modeled
with Markov chains like the one in Figure 4. The SIP sys-
tem was modeled with several different Markov chain sub-
models of fault tree leaves. Besides system availability, a
user-perceived reliability measure called the defects per mil-
lion (DPM) was also computed. This required us to model
the interaction between call flow and the failure/recovery
behavior. We were able to develop equations that could
be eventually mapped into cumulative transient analysis of
Markov reward models in SHARPE [53].

6. THECHANGINGWORLD OF SOFTWARE

When SHARPE was written, it was early in the world of
programming languages and software engineering. It was
after “go-to considered harmful” but well before object ori-
entedness. It was before C++, Java and Perl, even before
lex and yacc. The very first SHARPE versions were written
in Pascal, but it was soon rewritten in C. It was the lan-
guage that provided the power we needed, it was becoming
standardized, and there were compilers available for many
different kinds of hardware and operating systems.

We found C to be a fine language for our purposes, but
it did present a problem in that it is prone to letting pro-
grammers create memory management problems. We found
it relatively easy to find and fix problems with bad pointers.
Memory leaks were a harder problem, usually showing up
only in practice, and were hard to diagnose. Before long, we
built some memory leak detection code into the software.
Now there are static analysis tools to help with that. Many
of the newer languages handle memory management inter-
nally, a clear advantage over C.

These days, there are a lot more options with regard
to portability, but we have not been tempted to rewrite
SHARPE using any of them. An interpreted language like
Perl is more universally available but a lot slower in exe-

cution. A byte-compiled language like Java is somewhat
more portable but can still be slower in execution. Further-
more, our experience has been that these languages often
have more issues than a compiled language with differing
behavior between different releases and even between differ-
ent machines running the same release.

When object-oriented programming was introduced, we
considered rewriting SHARPE in an O-O language. It is
especially tempting to use Java, which we have found to be
a friendly language, and have seen used quite successfully
in a variety of applications. Some of the commercial O-
O code we’ve read, especially C++, has shown that it’s as
easy to write bad code in an O-O language as in any other
language. The code that does the real work is sometimes
hard to find, and it is easy to make subtle mistakes that are
very hard to diagnose. Furthermore, different people can
have very different ideas of what an “object” should be for
a particular problem domain. Having said that, we think
there would be value in rewriting parts of SHARPE in a
more explicitly object-oriented way, though we might want
to do that while still using the C language.

Although the early days of SHARPE were way before
there was much talk in most courses about the role of test-
ing in software development, common sense and experience
told us that any lines of code we had not exercised had a
very good chance of being wrong. So we created a regres-
sion testbed - a set of tests to verify that the software works
correctly. The testbed consists of examples of all the model
types used in various combinations and the known good out-
put for each example and a simple shell script to execute
SHARPE for each input file and compare the output to the
known good output. In anticipation of some aspects of “ex-
treme programming” and “continuous integration”, we used
frequent test runs to help keep from introducing errors as
we made fixes and enhancements to the program. Another
advantage to having the testbed was that it gave us a way
to assure backward compatibility as we introduced enhance-
ments. Fairly early on, we started to use gcov to get coverage
numbers for the regression tests, and we drove the branch
coverage up to about 97%. Later, ATAC ([16]) was used to
evaluate coverage.

7. NUMERICAL ISSUESIN SHARPE

There have been two key aspects to working on SHARPE.
On the theoretical side, there is the study of the applicabil-
ity and characteristics of methods of analyzing the models.
On the practical side, there has been the need to implement
the methods in a reliable and maintainable way. One of
the challenges has been dealing with numerical error. The
SHARPE program monitors itself for the buildup of numer-
ical error, and notifies the user if it gets too big. If a par-
ticular model has its numerical error get out of hand, users
can decompose their model into levels to work around the
problem. Our set of regression tests includes examples that
deliberately push the limits of the methods. We increased
our confidence in the results by comparing the numbers from
different analysis methods for the same model executed on
the same hardware and comparing numbers from the same
analysis method executed on different hardware.

8. CONCLUSION
SHARPE has been a long-lived modeling tool. We think



its usefulness results from the many kinds of model types
offered, the flexibility offered by letting users choose how to
combine the models, the relative ease of making enhance-
ments, the user support (including the use of bugzilla [56]),
and the ongoing high level of testing. It is in use at many
universities as a teaching tool and as an aid in research in
dependable computing. It has been used at many industrial
sites to solve practical problems and has been integrated as
an engine ([36, 34]) in other software packages. SHARPE
can be acquired by sending an e-mail to kst@ee.duke.edu.
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