
SHARPE: Symbolic Hierarchical Automated
Reliability/Performance Evaluator

Language Description

Robin Sahner and K.S. Trivedi

Contents

1 Introduction 2

2 Basic language components 3

2.1 Comments : : : : : : : : : : : : 3
2.2 Copying text to output : : : : : 3
2.3 Constants : : : : : : : : : : : : 3
2.4 Names : : : : : : : : : : : : : : 3
2.5 Words and Evaluated Words : 4
2.6 Arithmetic Expressions : : : : : 4
2.7 Variables, Binding and Func-

tions : : : : : : : : : : : : : : : 5
2.8 Scope of Names and Words : : 6
2.9 Parameter and Argument Lists 6

3 Speci�cations of distributions 7

4 Speci�cation of models 8

4.1 Markov chains : : : : : : : : : 8
4.1.1 Markov chains with

absorbing states : : : : 9
4.1.2 Irreducible continuous

time markov chains : : : 9
4.1.3 Irreducible discrete

time markov chains : : : 10
4.2 Semi-markov chains : : : : : : 11
4.3 Reliability block diagrams : : : 12
4.4 Fault trees : : : : : : : : : : : : 13
4.5 Reliability graphs : : : : : : : : 14
4.6 Single-chain product-form

queueing networks : : : : : : : 14
4.7 Multiple-chain product-form

queueing networks : : : : : : : 15
4.8 Generalized stochastic petri nets 17
4.9 Series parallel graphs : : : : : : 18

5 Built in functions 19

6 Asking for results 20

6.1 Number of digits printed : : : : 20
6.2 Format for complex numbers : 20

6.3 Printing a system type : : : : : 20
6.4 Verbose Output : : : : : : : : : 20
6.5 Printing results of model anal-

ysis : : : : : : : : : : : : : : : : 23
6.6 Using a loop to print results : : 24

7 Controlling the analysis process 25

7.1 Phase-type markov chain
analysis : : : : : : : : : : : : : 25

7.2 Irreducible markov and semi-
markov chain analysis : : : : : 26

7.3 Values of epsilon : : : : : : : : 27

8 Input size limitations 28

9 Summary of top level input

statements 29

10 Examples 30

10.1 Discrete-Time Markov Chain : 30
10.2 Markov chain with absorbing

state : : : : : : : : : : : : : : : 31
10.3 Discrete time uniprogrammed

computer : : : : : : : : : : : : 32
10.4 Acyclic Markov Chain - Ex-

ample 1 : : : : : : : : : : : : : 33
10.5 Acyclic Markov Chain - Ex-

ample 2 : : : : : : : : : : : : : 36
10.6 Reward Distribution : : : : : : 37
10.7 Markov Chain with absorbing

states : : : : : : : : : : : : : : 41
10.8 Queuing Network : : : : : : : : 49
10.9 Irreducible Markov Chain

with reward rates : : : : : : : : 50
10.10Phase-type Markov Chain : : : 51
10.11Reliability block diagram : : : 53
10.12Product-form queueing network 55
10.13Generalized Stochastic Petri Net 56
10.14Series-parallel acyclic graph : : 58
10.15Markov Chain inside a graph : 60

A Using sharpe 61

1

1 Introduction

SHARPE (Symbolic Hierarchical Automated Reliability/Performance Evaluator) is a
program that accepts speci�cations of mathematical models and requests for model
analysis. It supports the following model types:

� Markov chains(acyclic, irreducible and phase type)

� Semi-Markov chains (acyclic and irreducible)

� Reliability block diagrams

� Fault trees

� Reliability graphs

� Single-chain product form queuing networks

� Multiple-chain product form queuing networks

� Generalized stochastic Petri nets

� Series-parallel acyclic graphs

This document is a reference manual for the SHARPE speci�cation language. The
sections contain the following information:

Section 2: Comments, constants, names, words, evaluated words, expressions, vari-
ables, functions, and lists of parameters and arguments.

Section 3: Speci�cations of distributions

Section 4: Speci�cations of models

Section 5: Built-in functions

Section 6: Asking for results

Section 7: Controlling the analysis process

Section 8: Input size limitations

Section 9: Summary of top-level input statements

Section 10: Examples

We use the following conventions:

� Keywords and necessary punctuation are given in boldface.

� Syntactic categories are given in italics.

� A line contained in angled brackets <> indicates and unspeci�ed number (pos-
sibly zero) of repetitions of the line.

� Curly brackets fg indicate an optional portion of a line or optional set of lines.

2

� Square brackets [] containing elements separated by vertical lines (\j") indicates
that one of the elements is expected.

SHARPE distinguishes between lower-case and upper-case letters. Keywords must be
either all lower-case or all upper-case. In this guide, keywords are shown in lower-case.

The SHARPE language is line-oriented. Tokens within a line may be separated by
any amount of white space (de�ned to be blanks and/or tabs). SHARPE recognizes
the UNIX line-continuation character, backslash (\n").

2 Basic language components

2.1 Comments

Any line that has the character \�" (star) as its �rst now-white space character is
considered to be a comment line, and is ignored.

2.2 Copying text to output

A line of the form:

echo anytext

causes anytext to be written on the output and is otherwise ignored.

2.3 Constants

A constant is an integer (sequence of digits) or a real number (digits followed by a
decimal point followed by digits). In a real number, either the leading or trailing digits
may be omitted (but not both). All integers are converted to
oating-point format
for purposes of internal computation. SHARPE does not currently support scienti�c
notation for constant input (for example SHARPE does not understand the meaning
of 3.1E+6)

2.4 Names

A name consists of a letter followed by any number of letters and/or digits. Names
are used for variables, function and distribution names, parameters, and indices in
sum functions. Names may be any length, but SHARPE only looks at the �rst 14
characters (if the lengths of names used is larger than 14 characters, it would be a
good idea to keep some characters in the �rst 14 characters di�erent).

3

2.5 Words and Evaluated Words

A word is a sequence of any characters except white space, commas, semicolons, paren-
theses, backslashes and dollar signs. Words are used for the speci�cation of names of
models and the components they contain.

A subword is a string of the form $n or $(expression). In the �rst case, n is any
single letter. In the second case, any expression can be used within the parentheses.
An evaluated word is made up of subwords and any characters except white space,
commas, semicolons, parentheses, backslashes and dollar signs.

When component names are used within built-in functions, they are evaluated words.
The use of evaluated words provides a limited means of indexing. If i is 4 and j is
5, the evaluated word $(i)A-$(j � i)B-$j evaluates to the component names 4A-1B-5.
For examples of the use of evaluated words, see sections 10.1 and 10.2.

Words may be any length, but SHARPE only looks at �rst 14 characters. In the
case of evaluated words, the truncation occurs after evaluation. In the remainder of
this document, identi�ers ending in name are assumed to be of type name, identi�ers
ending in word are assumed to be of type word, and identi�ers ending in eword are
assumed to be of type evaluated word.

2.6 Arithmetic Expressions

Expressions (expression)are written in in�x form. The following operands are allowed:

+ addition

- subtraction (binary) or negation (unary)

/ division (
oating-point)

� multiplication

^ exponentiation (binary) or \power of e" (unary)

The use of a unary \^" to mean \power of e" is nonstandard. At �rst, it seemed
natural to de�ne a built-in variable name e, but if that is done, we are prevented from
allowing the letter e as a user-de�ned variable.

The default operator precedence is as follows:

1. negation

2. exponentiation and \power of e"

3. multiplication and division

4. addition and subtraction

4

Within each level, evaluation is done from left to right. An order of evaluation other
than the default may be forced by the use of parentheses. The allowed operands are
as follows:

� constant

� simple var

� de�ned var

� func name (arg list)

� built in function

If func name is used, it must have already have been de�ned and the number of
arguments must agree with the number of parameters (possibly none) speci�ed when
the function was de�ned.

Built-in functions are described in section 5. If a built-in function containing a model
argument is used, the model argument must have been de�ned. The number of argu-
ments (not counting the system and node names) must match the number of param-
eters (possibly none) in the system de�nition.

Examples of expressions are:

360 / (360 + (k - 1) � x)
k � x � (1 - c(x,k))
3 � lambda � prob (second-fault, recovered; 2�lambda)
^(-(k-1) � x � tau)
delta / ((k-1) � x) � (1 - ^(-(k-1) � x / delta))
sum (i,1,n,sum(j,1,i,j))
sum (i,1,n,prob(m,$(i)-$(j)))

A constant expression is an expression in which all the operands are constants.

2.7 Variables, Binding and Functions

A simple variable (simple var) is a name that is de�ned implicitly by appearing in an
expression. All simple variables must be bound to values before analysis takes place.
There are two formats for binding variables. A single variable can be bound to a value
by the line:

bind simple var expression

A group of variables can be bound as follows:

bind
<simple var expression>
end

5

Simple variables can be bound either before or after their �rst appearance in an ex-
pression. All variables appearing in the speci�cation of a model must be bound to
values before the user requests results from that model.

Once a variable is bound, it retains its value until it is bound to a di�erent expression.

A function is de�ned by:

function func name (param list) expression

The parameter list is allowed to be empty, but the parentheses must be present.

A de�ned variable (de�ned var) is the same as a function with no arguments; it is
de�ned by:

var de�ned var expression

If a function or de�ned variable contains a simple variable in its de�nition and the
simple variable is rebound, the function or de�ned variable is recomputed the next
time its value is needed.

2.8 Scope of Names and Words

Simple variable, de�ned variables, function names, distribution names and model
names are global. They must all be di�erent. No two models can have the same
name, even if they are of di�erent type.

Component names are local to the model in which they appear.

Parameter names are local to their system, function, or distribution de�nition. The
index of a loop is local to the loop. The index in a sum function is local to the function.

2.9 Parameter and Argument Lists

A parameter list (param list) has the form:

name; name; � � � ; name

Parameter lists are used when in the de�nition of functions, distributions and models.

An argument list (arg list) has the form

expression; expression; � � � ; expression

Argument lists are used when functions or models are to be evaluated. It is possible
for a parameter or argument list to be empty.

6

3 Speci�cations of distributions

A cumulative distribution function (CDF) is a �nite exponential polynomial:

F (t) =
X

j

ajt
kj ebjt (t � 0)

There are seven built-in forms for specifying a distribution (dist):

zero This speci�es the discrete distribution having all its mass at zero. (F (t) = 1; t �
0)

inf This speci�es the discrete distribution having all its mass at in�nity. (F (t) =
0; t � 0)

gen triple; triple; � � �

This speci�es a complete exponential polynomial, term by term, where all num-
bers are real (not complex). Each triple has the form:

aj ; kj; bj

where aj and bj may be real or integer, and kj must be a non-negative integer.
bj must be less than zero.

cgen �ve-tuple, �ve-tuple, � � �

This speci�es a complete exponential polynomial, term by term, where complex
numbers are used. Each �ve-tuple has the form

real(aj); imag(aj); kj ; real(bj); imag(bj)

where kj must be non-negative integer, and the rest of the numbers may be
real or integer. real(bj) must be less than zero. The distribution thus speci-
�ed must be real valued. an equivalent condition is that the imaginary num-
bers must occur in conjugate pairs. That is, for every appearance of the term
real(aj); imag(aj); kj; real(bj); imag(bj) where imag(aj) or imag(bj) is nonzero,
the term real(aj);�imag(aj); kj; real(bj);�imag(bj) must appear.

tgen n-tuple, n-tuple, � � �

Here n is either four or �ve for each term. This speci�es a complete exponential
polynomial using sine and cosine functions. Each n-tuple has one of the following
three forms:

aj; kj ; bj;none
aj; kj ; bj; sin,xj
aj; kj ; bj; cos,xj

where kj must be a non-negative integer and the rest of the numbers may be
real or integer. bj must be less than zero.

7

de�ned dist (arg list)

This speci�es a built-in or user-de�ned distribution. The parentheses must be
present even if there are no parameters. There is one built-in distribution, exp,
having one parameter that is the inverse of the mean of the distribution. If the
parameter is �, then F (t) = 1� e��t.

cdf (system name f,state ewordg f;arg listg)

The system name may be that of any model type except irreducible chain or
gspn. A state eword is allowed only for Markov and semi-Markov chains (with
absorbing states). The distribution is that printed by the cdf keyword (see (1)
and (2) in section 6.5). The number of arguments must match the number of
parameters (possibly none) in the system de�nition.

To create a user-de�ned distribution, the following statement is used:

poly name (param list) dist

The parentheses must be present even if the argument list is empty. name
becomes a de�ned distribution (de�ned dist) and can be used anywhere one of
the built-in forms can be used.

4 Speci�cation of models

A model may have parameters; in that case the scope of the parameters is exactly the
entire model de�nition. If there are no parameters, the parentheses on the �rst line
on the model speci�cation may be (but do not have to be) left out.

The comments in the following model speci�cations are not required; they are included
here for informational value.

4.1 Markov chains

SHARPE allows three kinds of Markov chains; irreducible, acyclic and PH-type. A
PH-type (phase type) chain is a chain with absorbing states in which every state that
is not absorbing is transient.

An irreducible Markov chain (discrete-time or continuous-time) is speci�ed in one of
the two ways, either with or without initial state probabilities. Only for the irreducible
case, SHARPE solves both continuous and discrete time irreducible Markov chains. A
discrete time Markov chain is de�ned as if it were a continuous time Markov chain. We
emphasize that SHARPE is not designed to solve acyclic or phase-type discrete-time
Markov chains or is it designed to carry out the transient analysis of discrete-time
Markov chains. In these case, SHARPE handles continuous-time Markov chains.

While de�ning a discrete time Markov chain, eliminate all the self loops and specify
transition probabilities in place of transition rates (de�ned for continuous time Markov
chains).

8

4.1.1 Markov chains with absorbing states

A (continuous-time) markov chain with absorbing states (either acyclic or PH-type)
is speci�ed as follows:

markov name f(param list)g
� section 1: transitions and transition rates
<name name expression>
� section 2: rewards (optional)
f reward fdefault expressiong
<name expression> g
end
� section 3: initial state probabilities
<name expression>
end

Each line in the �rst section speci�es a state transition from the �rst name to the
second name having as its transition rate the given expression. The state transitions
(and associated rates) can be given in any order.

The second section is optional. If present, each line assigns a reward rate (expression)
to a non-absorbing state (name). In the current implementation, non-absorbing states
must have non-zero reward rates. By default, a state that is not assigned a reward
rate is assumed to have a reward rate of zero. If the reward keyword is followed by
default expression, the default reward for this chain is changed to the expression.

The third section gives initial state probabilities. In each line, the node name is
assigned expression as its initial state probability. If a state is not assigned an initial
state probability, the probability is assumed to be zero. The sum of all assigned initial
probabilities must be one.

For an acyclic chain, the third section may be left empty if there is a single node
having no incoming transitions. In that case, the single node is assumed to have an
initial probability of one, and all other nodes have initial probability zero. If more
than one node has no incoming probability, this section must not be empty.

4.1.2 Irreducible continuous time markov chains

If only a steady-state analysis of an irreducible continuous-time Markov chain is to be
done (using the built-in function prob), initial state probabilities are irrelevant. If a
transient analysis is to be done (using tvalue), initial state probabilities are required.

Older versions of SHARPE did not support transient analysis of continuous-time ir-
reducible chains and did not expect initial state probabilities to be speci�ed for irre-
ducible chains. For the sake of compatibility, SHARPE assumes that continuous-time
irreducible chains will be followed by initial state probabilities if and only if the line
containing the chain name ends in the keyword readprobs. A continuous-time irre-
ducible chain without initial state probabilities is speci�ed as follows:

9

markov name f(param list)g
� section 1: transitions and transition rates
<name name expression>
� section 2: rewards (optional)
f reward fdefault expressiong
<name expression> g
end

Once a continuous-time irreducible chain has been speci�ed without initial state prob-
abilities, tvalue cannot be applied to it. A continuous-time irreducible chain with
initial state probabilities is speci�ed as follows:

markov name f(param list)g readprobs
� section 1: transitions and transition rates
<name name expression>
� section 2: rewards (optional)
f reward fdefault expressiong
<name expression> g
end
� section 3: initial state probabilities
<name expression>
end

When a continuous-time irreducible chain has been speci�ed this way, either prob or
tvalue can be applied to it.

4.1.3 Irreducible discrete time markov chains

For doing the steady state analysis of a discrete-time Markov chain (using prob),
initial probabilities are not required. Note that a transient analysis of such chains
cannot be carried out in SHARPE. A discrete-time Markov chain without initial state
probabilities is speci�ed as follows:

markov name f(param list)g
� section 1: transitions and transition probabilities
<name name expression>
� section 2: rewards (optional)
f reward fdefault expressiong
<name expression> g
end

Each line in the �rst section speci�es a state transition from the �rst name to the
second name having as its transition probability the given expression. Alternatively
the transition probabilities may be speci�ed directly. The sum of the transition proba-
bilities for any name may not equal one due to elimination of the self loops. SHARPE
will internally calculate the probability associated with the self loop.

10

4.2 Semi-markov chains

SHARPE allows two kinds of semi-Markov chains: acyclic and irreducible.

An acyclic semi-Markov chain is speci�ed as follows:

semimark name f(param list)g f cond j uncond g
� section 1: transitions and transition distributions
<name name dist>
� section 2: rewards (optional)
f reward fdefault expressiong
<name expression> g
end
� section 3: initial state probabilities
<name expression>
end

The speci�cation is the same as for Markov chains with absorbing states, except that
instead of instantaneous transition rates we have distribution speci�cations.

By default, the distribution associated with a transition is conditional. That is, if F(t)
is attached to the transition from state A to state B, then F(t) is the probability that
the time from entering state A to entering state B is less than or equal to t, given that
a state transition from A to B takes place.

The default can be overridden on the command line; the
ag -su (for semi-Markov
unconditional) causes the default to be to interpret the distributions to be uncondi-
tional. That is, F(t) is the unconditional probability that the time from entering A to
entering B is less than or equal to t. The function F(t) is thus defective (less than one
as t approaches 1) unless B is the only possible successor of A.

For the sake of completeness, SHARPE also recognizes the
ag -sc (for semi-Markov
conditional), even though it is the default.

The �rst line of the speci�cation may optionally end in the keyword cond or uncond.
If the line ends in cond, all distributions in the speci�cation are interpreted to be
conditional, regardless of the default. If the line ends in uncond, all distributions are
interpreted as conditional.

An irreducible semi-Markov chain is speci�ed as follows:

semimark name f(param list)g f cond j uncond g
� section 1: transitions and transition distributions
<name name dist>
� section 2: rewards (optional)
f reward fdefault expressiong
<name expression> g
end

11

4.3 Reliability block diagrams

A reliability block diagram is speci�ed by

block name f(param list)g
<blockline>
end

A blockline has one of the following forms:

comp name dist

This is a basic component. It is assigned a name and a distribution.

parallel name name name fname : : :g

This represents components combined in parallel. The parallel system is as-
signed the �rst name and is composed of the rest of the names. The system
must have at least two components.

series name name name fname : : :g

This represents components combined in series. The series system is assigned
the �rst name and is composed of the rest of the names. The system must have
at least two components.

kofn name1 expression, expression, name2

This represents k-out-of-n system having identical components. The system is
assigned the name name1. The �rst expression gives k and the second expression
gives n. name2 gives a component or sub-block; the block name1 is assumed to
consist of n identically distributed (independent) copies of name2. In order for
the system to be operating, k of the components must be operating.

kofn name1, expression, expression, name name fname : : :g

This represents a k-out-of-n system having possibly di�erent components. The
system is assigned the name name1. The �rst expression gives k, and the second
expression gives n. The second expression is followed by n names, which give
the components comprising the system name1. The system is assumed to be
con�gured so that in order for the system to be operating, k of the components
must be operating. In general, the components and sub-blocks will not have
identical failure time distributions. It is important to note where there are
commas on this line and where there are not.

In forms 2 through 5, the names making up the block must already be de�ned.

12

4.4 Fault trees

A fault tree is speci�ed by the following:

ftree name f(param list)g
<ftreeline>
end

A ftreeline has one of the following forms:

basic name dist

This is a basic component. It is assigned a name and a distribution. Whenever
this name appears later in the fault tree speci�cation, it is interpreted as being
a physically distinct copy of a component having the assigned distribution.

repeat name dist

This is also a basic component assigned a name and a distribution. In this case,
whenever this name appears later in the fault tree speci�cation, it is interpreted
as being the same physical component.

transfer name name

The �rst name must have been previously de�ned using either basic or repeat.
The second name is associated with the �rst, and whenever the second name
appears later in the fault tree speci�cation, it is interpreted as being the same
physical component as the �rst name.

and name name name fname : : :g

This represents and \and" gate. The gate is assigned the �rst name, and the
rest of the names form the inputs to the gate. There must be n inputs.

or name name name fname : : :g

This represents and \or" gate. The gate is assigned the �rst name, and the rest
of the names form the inputs to the gate. There must be two inputs.

kofn name expression, expression, name

This represents a k-out-of-n gate having identical inputs. The gate is assigned
the �rst name. The �rst expression gives k and the second expression gives n.
The inputs to the gate are assumed to be n identically distributed, independent
copies of the second name.

kofn name expression, expression, name name fname : : :g

13

This represents a k-out-of-n gate whose inputs are not necessarily identical.
The gate is assigned the �rst name. The �rst expression gives k and the second
expression gives n. The names following the second expression are the inputs to
the gate; there must be at least two. The inputs are assumed to be con�gured
so that in order for the system to fail, k of the inputs must fail.

In forms 2 through 5, the names making up the block must already be de�ned.

4.5 Reliability graphs

A reliability graph is speci�ed by the following:

relgraph name f(param list)g
� section 1: unidirectional edges
<edge name edge name distribution>
� section 2: bidirectional edges (optional)
fbidirect
<edge name edge name distribution> g
end

In the �rst section, unidirectional edges are speci�ed. A path exists from the �rst
edge name to the second edge name. The distribution is the CDF for the time-to-
failure of the path.

In the second section (which is optional), bidirectional edges are speci�ed. Two paths
exist, one from the �rst edge name to the second and one from the second to the �rst,
each having the distribution as the time-to-failure CDF.

4.6 Single-chain product-form queueing networks

A single-chain product-form queueing network is speci�ed as follows:

pfqn name f(param list)g
� section 1: station-to-station probabilities
<station name station name expression>
end
� section 2: station types and parameters
<station name station name expression, : : : >
end
� section 3: number of customers per chain
<chain name expression>
end

In the �rst section, the two names represent station names in the queueing network,
and the expressions is the probability that a job goes to the second station after it has
been served at the �rst.

14

The second section de�nes the service type and parameters of each station. station type
is chosen from a prede�ned set of types. The number of expressions depends on the
server type. The possibilities for the lines in this section are as follows:

1. station name is rate

The station is an in�nite server; each job at the server has exponential service-
time CDF with the speci�ed rate.

2. station name fcfs rate

The station is a �rst-come-�rst-server server. Jobs in the queue are served one
at a time; the job being served (if any) has exponential service-time CDF with
the speci�ed rate.

3. station name ps rate

Jobs at the station share the server. When n jobs are at the station, each has
exponential service-time CDF with rate (rate=n).

4. station name lcfspr rate

The serving algorithm is \last come �rst served, preemptive resume".

5. station name ms number of servers, rate

The station contains multiple servers; the number of servers is given by the
expression number of servers. Each server had the same rate.

6. station name lds rate, rate, : : :

There is one server, whose service rate depends on the number of jobs at the
station. The �rst rate applies when there is one job, the second rate when there
are two jobs, and so on. If there are fewer rates given than the maximum number
of jobs, the last rate on the line is assigned to all the numbers of jobs for which
no rate was explicitly given.

The third section gives the number of customers in the network. Although the network
has only a single chain, it is expected that the chain be given a name. The name is
never used.

4.7 Multiple-chain product-form queueing networks

A multiple-chain product-form queueing network is speci�ed as follows:

mpfqn name f(param list)g
� section 1: station-to-station probabilities for each chain
<chain chain name
<station name station name expression>
end>
end
� section 2: station types and parameters
<<station name station type fexpression, : : :g>

15

<chain name expression, : : : >
end>
end
� section 3: number of customers per chain
<chain name expression>
end

In the �rst section, the two names represent station names in the queueing network,
and the expression is the probability that a job goes to the second station after it has
been served at the �rst.

The second section de�nes the service type and parameters of each station in each
chain. station type is chosen from the same pre-de�ned set of types as for single-chain
product-form queueing networks.

A particular station is assigned one station type (it cannot have di�erent station types
per chain). For stations of the multiple server type, the number of servers is the same
for all chains.

Except for FCFS stations, stations are allowed to have di�erent rates for each chain.
An FCFS station must have its station type and rate speci�ed as follows:

station name fcfs expression
end

For other stations, there are two ways to specify the server type and rates. The �rst
way is to specify the rates for each chain, like this:

station name station type fnumber of serversg
<chain name expression, : : : >
end>

number of servers is present if and only if station type isms (multiple server). Multiple
rates are expected if and only of station type is lds (load-dependent server). A chain-
speci�c line must be present for every chain in the network, even for chains which do
not contain the station.

The second way to specify server rates is to specify a default on the line that de�nes
the server type. The default rate (or list of rates) is assigned to the server for all
chains. For each chain-speci�c line following the default, the rates given there override
the default for that particular chain. The number of chain-speci�c lines can be zero.
Here is the form using the default:

station name station typefnumber of serversg expression, : : :
<chain name expression, : : : >
end>

The third section gives the number of customers in each chain.

16

4.8 Generalized stochastic petri nets

A generalized stochastic petri net is speci�ed as follows:

gspn name (param list)
� section 1: places and initial numbers of tokens
<place name expression>
end
� section 2: timed transition names, types and rates
<transition name ind expression>
<transition name dep place name expression>
end
� section 3: immediate transition names and weights
<transition name ind expression>
<transition name dep place name expression>
end
� section 4: place-to-transition arcs and multiplicity
<place name transition name expression>
end
� section 5: transition-to-place arcs and multiplicity
<transition name place name expression>
end
� section 6: inhibitor arcs and multiplicity
<place name transition name expression>
end

Each line in the �rst section speci�es a place name and the initial number of tokens
in the place.

Each line in the second section speci�es a name for a timed transition, a transition
type (ind if the transition rate is marking-independent and dep if it is marking-
dependent), a place name if and only if the rate is dependent, and a rate. If the
transition is marking-dependent, the e�ective rate of the transition depends on (is
multiplied by) the number of tokens present in the place.

Each line in the third section speci�es a name for an immediate transition, a transition
type (ind if the transition weight is marking-independent and dep if it is marking-
dependent), a place name if and only if the weight is dependent, and a weight. If the
transition is dependent, the e�ective weight of the transition depends on (is multiplied
by) the number of tokens present in the place. The transition weight determines the
probability that the transition is chosen if it is one of multiple immediate transitions
leaving a place.

The lines in the fourth section specify the arcs from places to transitions. The mul-
tiplicity indicates the number of tokens that must be present in the place for the
transition to �re.

The lines in the section �ve specify the arcs from transitions to places. The multiplicity
indicates the number of tokens that are deposited in the place when the transition is
�red.

17

The lines in section six specify inhibitor arcs from places to transitions. The multi-
plicity indicates how may tokens must be in the place to inhibit the transition from
�ring.

SHARPE allows gspns to have the same three types it allows for Markov chains:
acyclic, irreducible, and PH-type.

4.9 Series parallel graphs

A series-parallel graph is speci�ed as follows:

graph name f(param list)g
<name fnameg>
end
<graphline>
end

The �rst group of lines speci�es the edges in the graph. The edges do not have to be
sorted. There may be more than one start and/or terminating edge. It is possible for
a name to appear alone on a line. This represents a node having no predecessors and
no successors.

A graphline has one of the following forms:

dist name dist

This assigns the given distribution to the given graph node. A distribution must
be speci�ed for each graph node.

exit name exit type

This assigns the given exit type to the given node. For every node that has
more than one exiting edge, an exit type must be satis�ed. If a graph called g
has more than one entrance node (node with no predecessors), then SHARPE
supplies a dummy entrance node called E.g with zero distribution and edges
leading from E.g to each user-speci�ed entrance node. When this is the case,
the user must supply an exit type for the node E.g.

prob name name expression

The expression gives a probability value to be assigned to the edge going from
the �rst name to the second name. For each node x that has n successors and
whose exit type is prob, probability values must be assigned to at least n-1 of
the edges leading out of x. If values are given for all of the edges, the sum of
the values must be one. If one value is missing, the sum of the values must be
less than one and SHARPE will compute the missing value.

multpath

This line requests multiple-path information for the system. Whenever there
are probabilistic subgraphs that are not inside maximum, minimum or k-out-
of-n subgraphs, SHARPE considers the graph to contain more than one path.

18

If multiple-path information is requested, SHARPE will compute for each path
the probability of taking the path and the conditional distribution for the time-
to-�nish, given that the path is taken.

The exit types (exit type) are

prob - The parallel subgraphs are probabilistic.

max - All of the subgraphs must complete before going on.

min - One of the parallel subgraphs must complete before going on.

kofn - The �rst expression gives k and the second expression gives n. kout of the n
parallel subgraphs must complete before going on. If this exit type is speci�ed for
a graph with exactly one successor node, that node is assumed to be duplicated
n times, with each copy being identically distributed. Except for this case, it
is required that the node with kofn exit type have exactly n following parallel
subgraphs.

5 Built in functions

SHARPE provides built-in functions (built in function) that return information about
model speci�cation and values resulting from models analysis. Tables 1-2 show all of
the built-in functions currently available. Where applicable, it shows the systems to
which each built-in function applies and the value returned.

The functions value and tvalue provide the same information for Markov chains; the
value of each is the value at a speci�ed time t of the transient probability function
for being in a speci�c state (or, if no state is speci�ed, of having reached absorption).
However, they arrive at the value in di�erent ways. When value is used, SHARPE
�rst computes the transient probability function symbolically in t, then evaluates the
function at t. When tvalue is used, SHARPE uses a numerical algorithm to compute
the value directly. The �rst method is faster, especially when t is large relative to the
rates in the chain. The second method is more stable. For more information about
ways in which the user can control what algorithms are used for analysis, see section
7, \Controlling the Analysis Process".

The function resulting from analysis of a system generally has the same interpretation
as the functions assigned to components. In Tables 1-2 , it has been assumed that
the functions assigned to the system components are CDFs; the result function is
again a CDF. If instead, for example, the components of the fault tree F had been
assigned availability functions, then value (5;F) would be the transient availability of
the system at time t=5. It should be noted that mean and variance may not have
a meaningful interpretation for some kinds of component (and result) functions.

State names (state eword) are allowed only for Markov or semi-Markov chains. If a
function has an argument list, the argument list must match up with the parameters
(possibly none) for the system.

19

6 Asking for results

6.1 Number of digits printed

The statement
format constant expression
speci�es the number of digits after the decimal point to be printed in results. This is
no way changes the way calculations are carried out internally. It simply speci�es the
reported precision on output.

6.2 Format for complex numbers

The keyword imag is used to control whether a CDF containing complex numbers is
printed in complex-number form or sine-cosine form. The statement imag on causes
results to be printed in complex-number form. The statement imag o� causes results
to be printed in sine-cosine form.

6.3 Printing a system type

To have SHARPE print the type of a system, use the command

type system name

This can be used, for example, to verify that the type of a chain (acyclic, irreducible
or PH-type) is what was intended.

6.4 Verbose Output

SHARPE provides two ways of asking for verbose output. If the
ag -v is used on
the command line, SHARPE turns verbose output on for the entire input �le unless
it is turned o� within the �le. To turn verbose output on and o� within the �le, the
following commands are used:

* the following turns verbose output on
verbose on
the following turns verbose output o�
verbose o�

When verbose output is turned on, SHARPE prints the following information:

� for Markov or semi-Markov chains, a list of the absorbing states (if any)

� whenever results for the system are requested, the type of the system and
whether or not a new analysis is being done

20

prob (system name, state eword f;arg listg)
chain with absorbing states the probability of visiting the state
irreducible Markov chain the steady state probability of being in the

state
mean (system name f,state ewordg f;arg listg)

graph mean of the traversal-time
block diagram and fault tree mean of the failure time
reliability graph mean of the failure time
chain with absorbing states, no state given mean time to absorption
chain with absorbing states, absorbing state given mean time to reach the state, given that the

state is reached
chain with absorbing states, transient state given mean of unconditional time from start to

leaving the state
non-irreducible gspn mean time to absorption

variance (system name f,state ewordg f;arg listg)
same as for mean variance of the CDF

pzero (system name f,state ewordg f;arg listg)
same as for mean but not gspn mass at zero of the CDF

pinf (system name f,state ewordg f;arg listg)
same as for mean but not gspn mass at in�nity of the CDF

pcont (system name f,state ewordg f;arg listg)
same as for mean but not gspn \continuous" part of the CDF

value (t; system name f,state ewordg f;arg listg)
graph value of t of the traversal-time CDF
block diagrams and fault trees value of t of the failure time CDF
reliability graph value of t of the failure time CDF
chain with absorbing states, no state given value of t of CDF for time to absorption
chain with absorbing states, absorbing state given value of t of CDF for time to reach the state,

given that the state is reached
chain with absorbing states, transient state given value of t of transient probability function for

being in the state
non-irreducible gspn value of t of CDF for time to absorption

tvalue (t; system name f,state ewordg f;arg listg)
phase-type Markov chain, no state given transient probability of having reached

absorption at time t

Markov chain (all types), state given transient probability of being in the state
at time t

sreward (system name f,state ewordg f;arg listg)
chain with rewards reward rate assigned to the state

exrss (system name f;arg listg)
irreducible chain with rewards expected steady state reward rate

exrt (t; system name f;arg listg)
non-irreducible chain with rewards expected reward rate at time t

cexrt (t; system name f;arg listg)
non-irreducible chain with rewards cumulative expected reward over (0,t)

rvalue (r; system name f;arg listg)
non-irreducible chain with rewards probability that cumulative reward is less than

r when an absorbing state is reached
sum (index, low, high, expression)

not applicable sum for index from low to high by 1 of the
expression

Table 1: Built-in Functions

21

tput (system name, eword f;arg listg)
pfqn or gspn through put for a single-chain pfqn station or gspn

transition
rtime (system name, station eword f;arg listg)

pfqn average response time of a single-chain pfqn station
qlength (system name, station eword f;arg listg)

pfqn average queue length of a single-chain pfqn station
util (system name, eword f;arg listg)

pfqn or gspn utilization for a single-chain pfqn station or gspn
transition

mtput (system name, station ewordf,chain ewordg f;arg listg)
multiple-chain pfqn, chain given throughput for a multi-chain pfqn station within

a chain
multiple-chain pfqn, no chain given throughput for a multi-chain pfqn station, sum

over all chains
mrtime (system name, station ewordf,chain ewordg f;arg listg)

multiple-chain pfqn, chain given average response time for a multi-chain pfqn
station within a chain

multiple-chain pfqn, no chain given average response time for a multi-chain pfqn
station, sum over all chains

mqlength (system name, station ewordf,chain ewordg f;arg listg)
multiple-chain pfqn, chain given average queue length for a multi-chain pfqn

station, within a chain
multiple-chain pfqn, no chain given average queue length for a multi-chain pfqn

station, sum over all chains
mutil (system name, station ewordf,chain ewordg f;arg listg)

multiple-chain pfqn, chain given utilization for a multi-chain pfqn station within
a chain

multiple-chain pfqn, no chain given utilization for a multi-chain pfqn station, sum
over all chains

etok (system name, place eword f;arg listg)
gspn average number of tokens in the place

prempty (system name, place eword f;arg listg)
gspn probability that the place is empty

etokt (t; system name, place eword f;arg listg)
non-irreducible gspn expected number of tokens in the place at time t

premptyt (t; system name, place eword f;arg listg)
non-irreducible gspn probability that the place is empty at time t

tputt (t; system name, transition eword f;arg listg)
non-irreducible gspn throughput of the transition at time t

utilt (t; system name, transition eword f;arg listg)
non-irreducible gspn utilization of the transition at time t

tavetokt (t; system name, place eword f;arg listg)
non-irreducible gspn time-averaged number of tokens in the place

during (0,t)
tavtputt (t; system name, transition eword f;arg listg)

non-irreducible gspn time-averaged throughput of a transition during
(0, t)

Table 2: More Built-in Functions

22

system type component function meaning result function meaning

acyclic Markov chain transition rate CDF of time to absorption
PH-type Markov chain transition rate CDF of time to absorption
acyclic semi-Markov chain transition distribution CDF of time to absorption
reliability block diagram component time-to-failure CDF system time-to-failure
reliability block diagram component availability system availability
reliability graph time-to-failure CDF system time-to-failure
fault tree component time-to-failure CDF system time-to-failure
fault tree component failure probability system failure probability
series-parallel graph component time-to-completion CDF system time-to-completion CDF
non-irreducible gspn transition rate CDF of time to absorption

Table 3: De�nition of cdf

� for gspns the type (acyclic, irreducible or PH-type) of gspn just after the gspn
speci�cation is read

� for reliability graphs, a list of paths from source to sink

� when a PH-type chain or gspn is analyzed, the algorithm and methods therein
are used (see section 7.1)

� when the \new" algorithm is being used for a PH-type chain or gspn, the con-
dition number of the underlying matrix

� for gspns, assorted cryptic information useful for debugging purposes

� when the uniformization algorithm is used, the values of l (left truncation point)
and k (right truncation point)

� when the uniformization algorithm is used with steady-state checking, the value
of l or k when steady state is reached (if at all)

� warnings whenever adjustments are made because of numerical considerations

6.5 Printing results of model analysis

SHARPE provides the following statements for printing the results of analyzing mod-
els.

cdf (system name f;arg listg)

This statement asks for the function computed when a system is analyzed. Usu-
ally this is a cumulative distribution function (CDF), but it may have another
interpretation, depending on the system and the meaning of the functions as-
signed to the system components. The mean and variance of the function are
also printed. Tables 3 shows the legal system types and the meaning of the
result function for common meanings of the component functions.

cdf (chain name, state eword f;arg listg)

If the speci�ed system was a graph and multiple-path information was requested,
the CDF is given for each path.

23

This statement asks for information pertaining to a particular state in Markov
or semi-Markov chain. The only types of chains allowed are acyclic Markov, PH-
type Markov and acyclic semi-Markov. If the state is absorbing, the function
printed is the CDF (and its mean and variance) of the time to reach that state,
conditional on reaching the state. If the state is not absorbing, SHARPE prints
the transient probability function for the state. In either case, SHARPE also
prints the probability of visiting the state.

lcdf (chain name, state eword f;arg listg)

This statement asks for information pertaining to a particular state in an acyclic
Markov or semi-Markov chain, conditional on reaching the state. SHARPE
prints the CDF of the time elapsed from the initial time until leaving the state,
conditional on entering the state. SHARPE also prints the mean and variance
of the CDF and the probability of visiting the state.

reward (chain name f;arg listg)

This statement is legal only for Markov and semi-Markov chains with absorb-
ing states and rewards. The function printed is R(r), the probability that the
accumulated reward at time of absorption is less than or equal to r.

pqcdf (system name f;arg listg)

This statement is legal for fault trees and reliability graphs. SHARPE prints
the time-to-failure CDF for the fault tree symbolically in terms of the time-to-
failure functions of the individual components or edges. The result consists of a
sum of products where the multiplicands are functions Qi and Pi, where Qi(t)
is the time-to-failure CDF of component or edge i and Pi is 1�Qi.

eval (system name f;state ewordg f;arg listg) low high increment ffunctiong

The arguments are the same as for cdf. low, high and increment are all expres-
sions. function is cdf, reward, or any of the built-in-function names that take
a time parameter. If no function appears, the default is cdf.

SHARPE evaluates function over the interval (low, high) at increments of incre-
ment. If the speci�ed system was a graph and multiple-path information was
requested, the evaluation is given for each path.

expr expression f,expression : : : g

SHARPE prints the value of the expression(s).

6.6 Using a loop to print results

A loop may be used for printing results; the only legal statements within a loop are
expr, loop, bind and epsilon statements. See section 7.3 for information about the
epsilon statement. The syntax is

loop simple var,low, highf,incrementg
< loop >
<bind simple var expression>
<expr expression f,expression : : : g>

24

<epsilon e type expression>
end

low, high and increment may be any expressions. If no increment is present, it is
assumed to be one. The statement types within the loop may be intermixed.

7 Controlling the analysis process

This section describes the statements SHARPE provides to allow the user to exercise
some options for how model analysis is done.

7.1 Phase-type markov chain analysis

SHARPE provides three algorithms for analyzing phase-type Markov chains: old, new
and uniformization. The old and new algorithms are "symbolic algorithms", producing
functions symbolic in the time variable t. Their names are derived from the fact that
one algorithm (old) was implemented before the other (new). The old algorithm is
O(n5) and the new is O(n3). However, the old algorithm appears to be more accurate
and the di�erence in e�ciency is small for small chains. The uniformization algorithm
requires a particular time t and computes transient probabilities for that value of t.

When results are requested using cdf or the built-in-function value, one of the two
symbolic algorithms is used. (In the case of value, the CDF is computed and then
evaluated at t) By default, the old symbolic algorithm is used. The statements phnew
and phold control explicitly which symbolic algorithm is used. When phnew appears,
SHARPE switches to using the new algorithm for all cdf and value requests it sees.
The statement phold causes SHARPE to switch back to using the slow algorithm.

It is possible to change the default algorithm on the command line. If the
ag -pn is
used, the default algorithm is new. the algorithm can still be changed within the �le
by using phold and phnew. For the sake is completeness, the
ag -po to make old
the default, is recognized even though old is the default anyway.

Both of the symbolic algorithms require as one of their steps �nding the eigenvalues
of a matrix. SHARPE contains two routines for �nding eigenvalues. The �rst was
included when the old symbolic algorithm was implemented; the second came with
the new symbolic algorithm. The main di�erence between the two is that the second
eigenvalue �nder leaves the input matrix in upper Hessenberg form.

The old algorithm can use either eigenvalue �nder (it uses the �rst algorithm by
default), but the new algorithm requires the second eigenvalue �nder. When SHARPE
sees phnew or the
ag -pn, it automatically uses the second eigenvalue �nder. The
SHARPE statements eigen1 and eigen2 control which eigenvalue �nder is used. If
eigen1 is used after the new algorithm has been speci�ed, eigen2 will be ignored.

The eigenvalue �nder can be speci�ed on the command line. The
ag -e1 chooses the
�rst eigenvalue �nder; -e2 chooses the second. eigen1 and eigen2 statements in an

25

input �le override these command line options.

Both of the symbolic algorithms require as one of their steps choosing a set of com-
plex values for a variable. There are two methods available, simple and voronoi.
The voronoi method attempts to choose the values in such a way as to improve the
numerical stability of the overall algorithm for analyzing phase-type chains. Either
value-choosing method can be used with the new symbolic algorithm; the old algo-
rithm can only use the simple method. By default, both algorithms use the simple
method.

The statements voronoi on and voronoi o� control which value-choosing method
is used. When SHARPE sees phold or the
ag -po, it automatically uses the simple
method. An attempt to choose the voronoi method after the slow algorithm has
been chosen will be ignored. The
ag -vo on the SHARPE command line causes the
voronoi method to be used. The statements voronoi on and voronoi o� override
the command line
ag.

If SHARPE is run with verbose output turned on, it prints which symbolic algorithm,
which eigenvalue �nding method, and which whenever it analyzes a phase-type Markov
chain for cdf or value.

The uniformization algorithm is chosen using the built-in function tvalue. This algo-
rithm's e�ciency is linear in time parameter t, but the constant is such that it may
take quite a long time for large t.

The uniformization algorithm can optionally check, during its iterations, whether t
is large enough that the chain has reached steady state. The check itself is time-
consuming, so SHARPE allows the check to be turned on and o�. The statement
unif ss on turns the check on; unif ss o� turns it o�. The default is for steady-state
checking to be o�. Steady-state checking can also be turned on on the command line
by using the
ag -ss. The
ag is overridden by unif ss statements inside input �les.

Table 4 summarizes the possible combinations of algorithms and method within al-
gorithms that are available and indicates the statements that would be used to have
SHARPE use each combination. When a statement appears in parentheses in the
tabel, it means that the statement can be omitted because it is the default.

7.2 Irreducible markov and semi-markov chain analysis

SHARPE contains two algorithms for obtaining steady-state probabilities for irre-
ducible Markov and semi-Markov chains: SOR and Gauss-Seidel. SHARPE always
begins its analysis by using the SOR algorithm. If SOR does not converge to a solu-
tion after a certain number of iterations, SHARPE prints the number of iterations and
the \tolerance" and asks whether to continue with SOR, switch to Gauss-Seidel, or
terminate the algorithm. The \tolerance" is the ratio between the largest (in absolute
value) value in the most recent probability vector.

If the choice is to continue, SHARPE will do so and will continue to prompt for a
decision every time a certain number of iterations has gone by without convergence.
As long as SOR is still being used, the options are to continue SOR, switch to Gauss-

26

Combination of Methods
algorithm eigenvalue value statements

�nder chooser

slow �rst simple (phold)
(eigen1)
(voronoi o�)
cdf or value

slow second simple (phold)
eigen2

(voronoi o�)
cdf or value

fast second simple phnew

(eigen2)
(voronoi o�)
cdf or value

fast second voronoi phnew

(eigen2)
voronoi on

cdf or value
uniformization NA NA (unif ss o�)
without steady state tvalue

uniformization NA NA unif ss on

with steady state tvalue

Table 4: Available Phase-type Analysis Choices.

Seidel or stop. Once Gauss-Seidel is being used, the only options are to continue
Gauss-Seidel or to stop.

If the
ag -f appears on the command line, SHARPE will start with the SOR algorithm
and automatically switch to Gauss-Seidel if SOR has not converged in a certain number
of iterations. If -f is used, there will be no user interaction required while SHARPE
is running. However, it is possible that the algorithm might not terminate on certain
models.

The \certain number of iterations" depends on the number of states in the chain and
on whether the -f
ag is used. If -f is used, SHARPE will run the SOR algorithm for
more iterations than the number that would cause the �rst user prompt without the
-f
ag.

SHARPE allows the tvalue built-in function to be applied to irreducible Markov chains
to obtain transient state probabilities using the uniformization algorithm. If the time
t is large enough, tvalue will �nd steady-state probabilities, but the algorithm can be
very time-consuming in this case.

7.3 Values of epsilon

SHARPE contains �ve user-controlled \epsilons", the small values that determine
when algorithms have converged or when two
oating point numbers are equal. To
set the value for one of these epsilons, the following statement is used:

27

epsilon epsilon id expression

where epsilon id is one of the following:

basic - this sets the value that determines when two
oating point numbers are equal
or when a
oating point number is zero.

uniform - this epsilon determines when the uniformization algorithm has converged.

�ndeigen - This determines when either of the two eigenvalue-�nding algorithms has
converged.

sorteigen - Both the old and new symbolic algorithms for phase-type chains must
sort eigenvalues after they are found. This epsilon determines when two eigen-
values are considered to be equal. This is very important to the slow symbolic
algorithm, since it handles equal eigenvalues as a special case in the remainder
of the algorithm.

results - This determines when a printed result is considered to be zero

Th statement info epsilons can be used to print the current value for all of the
\epsilons".

8 Input size limitations

SHARPE contains some static arrays that limit the input size. The following state-
ments ask SHARPE to print its:

info constants

If any of these limits is exceeded, SHARPE prints an error message and stops. Here
is a list of the quantities that are limited:

� length of an input line

� number of models

� number of component names (total, overall models)

� number of nodes in a series-parallel, acyclic graph

� number of places in a Petri net

� number of transitions in a Petri net

� number of arcs in a Petri net

� number of symbols (variable, function and distribution names)

� number of states in a Markov chain

� number of edges in a Markov chain

� number of chains in a queueing network

28

� number of intervals in an eval statement

� stack size for internal expression evaluation algorithm

� stack size for internal algorithm for fault trees with repeated components and
reliability graphs

9 Summary of top level input statements

A SHARPE input �le has the form:

<statement>
end

where statement is one of the following (for multiple-line statements, only the �rst line
is shown):

var name expression
func func name (param list) expression
poly name (param list) dist
graph name f(param list)g
markov name f(param list)g freadprobsg
semimark name f(param list)g fcond j uncondg
block name f(param list)g
relgraph name f(param list)g
ftree name f(param list)g
pfqn name f(param list)g
gspn name (param list)
bind
bind name expression
format expression
cdf (system name, fstate ewordg f;arg listg)
lcdf (chain name, state eword f;arg listg)
reward (chain name f;arg listg)
pqcdf (system name f;arg listg)
eval (system name, f,state ewordg f;arg listg) low high increment ffunctiong
expr expression f,expression : : : g
epsilon epsilon id expression
imag [on j o�]
verbose [on j o�]
unif ss [on j o�]
voronoi [on j o�]
loop low,highf,incrementg
eigen1
eigen2
phold
phnew

29

type system name
info [epsilons j constants]

10 Examples

In this section, we give a series of examples showing the features of the SHARPE
language. It is assumed that this package is used in concert with the book

Kishor S. Trivedi, \Probability and Statistics with Reliability, Queuing
and Computer Science Applications." Prentice Hall, 1982.

which is henceforth denoted as KST. Many of the examples provided in this section are
taken directly from this book so the descriptions are very brief but the page number
in KST is provided.

The results are presented in tabular form with the input to SHARPE in the left-hand
column and the output from SHARPE in the right-hand column of the table. Refer
to Appendix A for detailed instructions on using SHARPE.

10.1 Discrete-Time Markov Chain

This is a memory interference model with state diagram on page 328, book by KST.
In this example there are two processors and two memory modules for which the
processors contend. It is �nite state, discrete-time markov chain (DTMC). States (1,1),
(0,2) & (2,0) are denoted as 11, 02 and 20 respectively. The transition probabilities q1
and q2 have been chosen randomly. This example uses the built-in function prob to
�nd the steady state probabilities of visiting the states of the system. We emphasize
that SHARPE can perform a steady-state analysis of DTMCs but it cannot carry out
a transient analysis of DTMCs. While specifying a DTMC, make sure that you do
not specify the self loop on a state; SHARPE will automatically compute the self loop
probability based on the sum of the probabilities to other states.

The following input �le to SHARPE for the Discrete-Time Markov Chain Memory
Interference model can be run:

markov mem_interfere

11 02 q2*q2

11 20 q1*q1

02 11 q1

20 11 q2

end

bind

q1 .6

q2 .4

end

30

expr prob(mem_interfere,11)

expr prob(mem_interfere,02)

expr prob(mem_interfere,20)

end

Produces the following output:

prob(mem_interfere,11): 4.6154e-01

prob(mem_interfere,02): 1.2308e-01

prob(mem_interfere,20): 4.1538e-01

10.2 Markov chain with absorbing state

This is the solution of the �nite-state, continuous-time markov chain (CTMC) for the
program execution model on page 352 of KST. Note that the text example is a DTMC
but since we are interested in carrying out a transient analysis, we change the problem
and consider the model to be a CTMC. This example has one absorbing state F, which
is denoted as s5 in KST.

The following is the input to SHARPE for a CTMC with absorbing state - Program
Execution model:

markov pgm_exec

s1 s2 0.6

s1 s3 0.4

s3 s2 0.2

s2 s4 0.6

s3 s4 0.4

s4 s3 0.6

s2 F 0.4

s3 F 0.4

s4 F 0.4

end

end

cdf(pgm_exec,F)

31

end

Which produces the following result:

information about system pgm_exec node F

probability of entering node: 1.0000e+00

conditional CDF for time of reaching this absorbing state

1.0000e+00 t(0) exp(0.0000e+00 t)

+ -1.6667e+00 t(0) exp(-4.0000e-01 t)

+ 6.6667e-01 t(0) exp(-1.0000e+00 t)

mean: 3.5000e+00

variance: 7.2500e+00

10.3 Discrete time uniprogrammed computer

This example solves the uniprogrammed computer system model with m I/O devices
and a CPU. The system description and the model is given on page 322 of KST.
This model is an irreducible �nite-state, discrete-time Markov chain. The number
of I/O devices has been arbitrarily chosen to be 5, the probabilities of accessing the
devices have been arbitrarily chosen, and the program will continue execution with a
probability of 0.5. In state 0 the program is executing on the CPU. The request for
I/O device i occurs with a probability "qi" (i is the subscript here). If I/O device i is
being accessed/used then the system is in state i, i > 0.

The following is the input �le to SHARPE for a Uniprogrammed Computer System
model:

markov unipgmmed_cmpter

0 1 q1

0 2 q2

0 3 q3

0 4 q4

0 5 q5

1 0 1

2 0 1

3 0 1

4 0 1

5 0 1

end

bind

q1 .06

q2 .1

q3 .1

q4 .2

q5 .04

end

32

expr prob(unipgmmed_cmpter,0)

expr prob(unipgmmed_cmpter,1)

expr prob(unipgmmed_cmpter,2)

expr prob(unipgmmed_cmpter,3)

expr prob(unipgmmed_cmpter,4)

expr prob(unipgmmed_cmpter,5)

end

Which produces the following output:

prob(unipgmmed_cmpter,0): 6.6667e-01

prob(unipgmmed_cmpter,1): 4.0000e-02

prob(unipgmmed_cmpter,2): 6.6667e-02

prob(unipgmmed_cmpter,3): 6.6667e-02

prob(unipgmmed_cmpter,4): 1.3333e-01

10.4 Acyclic Markov Chain - Example 1

In this example, the following language features are used: Markov chain speci�cation,
user-de�ned functions, variable bindings, cdf to print results, eval to print results,
built-in functions value and sum, evaluated names, and loop to print results. The
input to SHARPE is:

* function definitions

func c(x,k) 360 / (360 + (k-1) * x)

func l(x,k) k * x * c(x,k)

func fl(x,k) k * x * (1 - c(x,k))

* acyclic Markov chain & cdf(main,F)

markov chain

5-3 4-3 l(lambda, 5)

4-3 3-3 l(lambda, 4)

3-3 2-3 l(lambda, 3)

5-3 F fl(lambda, 5) + fl(mu, 3)

33

4-3 F fl(lambda, 4) + fl(mu, 3)

3-3 F fl(lambda, 3) + fl(mu, 3)

2-3 F (2 * lambda) + fl(mu, 3)

5-3 5-2 l(mu, 3)

4-3 4-2 l(mu, 3)

3-3 3-2 l(mu, 3)

2-3 2-2 l(mu, 3)

5-2 4-2 l(lambda, 5)

4-2 3-2 l(lambda, 4)

3-2 2-2 l(lambda, 3)

5-2 F (2 * mu) + fl(lambda, 5)

4-2 F (2 * mu) + fl(lambda, 4)

3-2 F (2 * mu) + fl(lambda, 3)

2-2 F (2 * mu) + (2 * lambda)

end

* No initial state probabilities are

* given. It will be assumed that state

* 5-3, the only state with no

* predecessors, has probability one and

* all other states have probability zero

end

bind lambda .0001 mu .00001 end

* the following function of t gives

* the probability that state F is reached

* in time <= t

cdf(main,F)

* the following statement asks to

* the following statement asks to

* have cdf(main,F) evaluated at values

* of t starting at 5 and going up to

* 15 by increments of 1

eval(main,F) 5 15 1

* value (t;main, state0 gives the

* transient probability of being in the

* state at time t. The function gp adds

* these for all of the states. We expect

* gp(t) to be 1 for all t

* func gp(t) sum(i,2,3,\

sum(j,2,5, value(t; main,$(j)-$(i)))\

+ value(t; main, F)

* the following loop tries sum values

34

of t

loop t,0.5,1,0.1

expr gp(t)

end

end

with the output:

information about system main node F

probability of entering node: 1.0000e+00

conditional CDF for time of reaching this absorbing state

1.0000e+00 t(0) exp(0.0000e+00 t)

+ -3.0000e+01 t(0) exp(-2.2000e-04 t)

+ 2.0000e+01 t(0) exp(-2.3000e-04 t)

+ 6.0000e+01 t(0) exp(-3.2000e-04 t)

+ -4.0000e+01 t(0) exp(-3.3000e-04 t)

+ -4.5000e+01 t(0) exp(-4.2000e-04 t)

+ 3.0000e+01 t(0) exp(-4.3000e-04 t)

+ 1.2000e+01 t(0) exp(-5.2000e-04 t)

+ -8.0000e+00 t(0) exp(-5.3000e-04 t)

mean: 1.2512e+04

variance: 4.3615e+07

--

system main

node F

t F(t)

5.0000 e+00 1.0284 e-08

6.0000 e+00 1.4141 e-08

7.0000 e+00 1.8597 e-08

8.0000 e+00 2.3654 e-08

9.0000 e+00 2.9310 e-08

1.0000 e+00 3.5567 e-08

1.1000 e+00 4.2423 e-08

1.2000 e+00 4.9880 e-08

1.3000 e+00 5.7938 e-08

1.4000 e+00 6.6596 e-08

1.5000 e+00 7.5854 e-08

t = 0.500000

gp(t): 1.0000e+00

t = 0.600000

gp(t): 1.0000e+00

t = 0.700000

gp(t):1.0000e+00

35

t = 0.800000

gp(t):1.0000e+00

t = 0.900000

gp(t):1.0000e+00

t = 0.100000

gp(t):1.0000e+00

10.5 Acyclic Markov Chain - Example 2

This example shows two di�erent ways of specifying transition rate functions of a
Markov chain. The following summarizes the input to SHARPE and the resulting
output. This a markov chain with absorbing states. F is the �nal state, i.e., the
absorbing state.

var c8 360 / (360 + 7 * lambda)

var fc8 1 - c8

var l8 8 * lambda * c8

var fl8 8 * lambda * fc8

markov m1

8-2 7-2 l8

8-2 F (2 * mu) + fl8

end

end

bind

lambda .0001

mu .00001

end

cdf (m1,F)

end

with the resulting output of:

information about system m1 node F

probability of entering node: 2.4392e-02

conditional CDF for time of reaching this absorbing state

1.0000e+00 t(0) exp(0.0000e+00 t)

+ -1.0000e+00 t(0) exp(-8.2000e-04 t)

mean: 1.2195e+03

variance: 1.4872e+06

36

Another way of de�ning the above chain is:

func c(x, k) 360 / (360 + (k-1) * x)

func l(x, k) k * x * c(x, k)

func fl(x,k) k * x * (1 - c(x, k))

markov m2

8-2 7-2 l(lambda, 8)

8-2 F (2 * mu) + fl(lambda, 8)

end

end

bind

lambda .0001

mu .00001

end

cdf (m2,F)

end

which produces the following results

information about system m2 node F

probability of entering node: 2.4392e-02

conditional CDF for time of reaching this absorbing state

1.0000e+00 t(0) exp(0.0000e+00 t)

+ -1.0000e+00 t(0) exp(-8.2000e-04 t)

mean: 1.2195e+03

variance: 1.4872e+06

10.6 Reward Distribution

The following illustrate two examples that test the reward distributions and rvalue for
acyclic and PH-type chains. Input to SHARPE:

* test of reward distribution and rvalue for

* acyclic Markov and PH-type chains

bind

r1 3

r2 8

r3 6

r4 4

end

markov m

1 2 1

37

1 3 2

2 4 3

3 4 4

4 5 5

reward

1 r1

2 r2

3 r3

4 r4

end

end

markov mr

1 2 1/r1

1 3 2/r1

2 4 3/r2

3 4 4/r3

4 5 5/r4

end

end

cdf(m)

* reward(m) and cdf(mr) should be equal

reward(m)

cdf(mr)

* test that chain is re-analyzed for ordinary cdf

cdf(m)

* the two values should be equal

expr value(.2;mr),rvalue(.2;m)

bind

ra 3

rb 4

end

markov m2

a b 3

b a 4

a c 9

reward

a ra

b rb

end

a 1

end

markov mr2

a b 3/ra

b a 4/rb

a c 9/ra

end

a 1

end

38

cdf(m2)

reward(m2)

cdf(mr2)

cdf(m2)

expr value(.2;mr2), rvalue(.2;m2)

eval (m2) 0 .4 .2 reward

end

with the output:

CDF for system m:

-2.5000e+00 t(1) exp(-3.0000e+00 t)

+ 1.0000e+00 t(0) exp(0.0000e+00 t)

+ -6.2500e+00 t(0) exp(-3.0000e+00 t)

+ 1.0000e+01 t(0) exp(-4.0000e+00 t)

+ -4.7500e+00 t(0) exp(-5.0000e+00 t)

mean: 8.1111e-01

variance: 2.3136e-01

reward cdf for chain m:

1.0000e+00 r(0) exp(0.0000e+00 r)

+ -7.6190e-01 r(0) exp(-3.7500e-01 r)

+ -4.2857e+00 r(0) exp(-6.6667e-01 r)

+ 7.6667e+00 r(0) exp(-1.0000e+00 r)

+ -3.6190e+00 r(0) exp(-1.2500e+00 r)

mean: 3.6889e+00

variance: 5.8128e+00

CDF for system mr:

1.0000e+00 t(0) exp(0.0000e+00 t)

+ -7.6190e-01 t(0) exp(-3.7500e-01 t)

+ -4.2857e+00 t(0) exp(-6.6667e-01 t)

+ 7.6667e+00 t(0) exp(-1.0000e+00 t)

+ -3.6190e+00 t(0) exp(-1.2500e+00 t)

mean: 3.6889e+00

variance: 5.8128e+00

CDF for system m:

39

-2.5000e+00 t(1) exp(-3.0000e+00 t)

+ 1.0000e+00 t(0) exp(0.0000e+00 t)

+ -6.2500e+00 t(0) exp(-3.0000e+00 t)

+ 1.0000e+01 t(0) exp(-4.0000e+00 t)

+ -4.7500e+00 t(0) exp(-5.0000e+00 t)

mean: 8.1111e-01

variance: 2.3136e-01

value(.2;mr): 8.2368e-04

rvalue(.2;m): 8.2368e-04

CDF for system m2:

1.0000e+00 t(0) exp(0.0000e+00 t)

+ -4.0551e-01 t(0) exp(-2.7085e+00 t)

+ -5.9449e-01 t(0) exp(-1.3292e+01 t)

mean: 1.9444e-01

variance: 7.9475e-02

reward cdf for chain m2:

1.0000e+00 r(0) exp(0.0000e+00 r)

+ -3.6132e-01 r(0) exp(-6.9722e-01 r)

+ -6.3868e-01 r(0) exp(-4.3028e+00 r)

mean: 6.6667e-01

variance: 1.1111e+00

CDF for system mr2:

1.0000e+00 t(0) exp(0.0000e+00 t)

+ -3.6132e-01 t(0) exp(-6.9722e-01 t)

+ -6.3868e-01 t(0) exp(-4.3028e+00 t)

mean: 6.6667e-01

variance: 1.1111e+00

40

CDF for system m2:

1.0000e+00 t(0) exp(0.0000e+00 t)

+ -4.0551e-01 t(0) exp(-2.7085e+00 t)

+ -5.9449e-01 t(0) exp(-1.3292e+01 t)

mean: 1.9444e-01

variance: 7.9475e-02

value(.2;mr2): 4.1559e-01

rvalue(.2;m2): 4.1559e-01

system m2

r F(r)

0.0000 e+00 0.0000 e+00

2.0000 e-01 4.1559 e-01

4.0000 e-01 6.1237 e-01

10.7 Markov Chain with absorbing states

The following example uses the built-in functions cdf and lcdf. It demonstrates the
use of value to check that the system is in any one of the states speci�ed. This can be
helpful in validating the model.

The following is the input to SHARPE:

markov m

1 2 1

1 3 2

2 4 3

3 4 4

4 5 5

end

end

lcdf(m,1)

lcdf(m,2)

lcdf(m,3)

lcdf(m,4)

cdf(m,5)

cdf(m,1)

cdf(m,2)

cdf(m,3)

cdf(m,4)

expr value(.1;m,1),value(.1;m,2),value(.1;m,3),\

value(.1;m,4),value(.1;m,5)

expr value(.1;m,1)+value(.1;m,2)+value(.1;m,3)+\

41

value(.1;m,4)+value(.1;m,5)

expr value(.2;m,1)+value(.2;m,2)+value(.2;m,3)+\

value(.2;m,4)+value(.2;m,5)

expr value(.5;m,1)+value(.5;m,2)+value(.5;m,3)+\

value(.5;m,4)+value(.5;m,5)

markov m2

1 2 1

1 3 2

A 2 8

2 4 3

3 4 4

4 5 5

end

1 .4

A .4

2 .2

end

lcdf(m2,1)

lcdf(m2,2)

lcdf(m2,3)

lcdf(m2,4)

lcdf(m2,A)

cdf(m2,5)

cdf(m2,1)

cdf(m2,2)

cdf(m2,3)

cdf(m2,4)

cdf(m2,A)

expr value(.1;m2,1),value(.1;m2,2),value(.1;m2,3)

expr value(.1;m2,4),value(.1;m2,5),value(.1;m2,A)

expr value(.1;m2,1)+value(.1;m2,2)+value(.1;m2,3)+\

value(.1;m2,4)+value(.1;m2,5)+value(.1;m2,A)

expr value(.2;m2,1)+value(.2;m2,2)+value(.2;m2,3)+\

value(.2;m2,4)+value(.2;m2,5)+value(.2;m2,A)

expr value(.5;m2,1)+value(.5;m2,2)+value(.5;m2,3)+\

value(.5;m2,4)+value(.5;m2,5)+value(.5;m2,A)

markov mm

a b 3

a c 9

a d 4

end

end

cdf(mm,a)

cdf(mm,b)

cdf(mm,c)

cdf(mm,d)

expr value(.1;mm,a)+value(.1;mm,b)+\

value(.1;mm,c)+value(.1;mm,d)

end

42

with the following output:

information about system m node 1

probability of entering node: 1.0000e+00

conditional CDF for time of leaving this node

1.0000e+00 t(0) exp(0.0000e+00 t)

+ -1.0000e+00 t(0) exp(-3.0000e+00 t)

mean: 3.3333e-01

variance: 1.1111e-01

information about system m node 2

probability of entering node: 3.3333e-01

conditional CDF for time of leaving this node

-3.0000e+00 t(1) exp(-3.0000e+00 t)

+ 1.0000e+00 t(0) exp(0.0000e+00 t)

+ -1.0000e+00 t(0) exp(-3.0000e+00 t)

mean: 6.6667e-01

variance: 2.2222e-01

information about system m node 3

probability of entering node: 6.6667e-01

conditional CDF for time of leaving this node

1.0000e+00 t(0) exp(0.0000e+00 t)

+ -4.0000e+00 t(0) exp(-3.0000e+00 t)

+ 3.0000e+00 t(0) exp(-4.0000e+00 t)

mean: 5.8333e-01

variance: 1.7361e-01

information about system m node 4

probability of entering node: 1.0000e+00

conditional CDF for time of leaving this node

-2.5000e+00 t(1) exp(-3.0000e+00 t)

+ 1.0000e+00 t(0) exp(0.0000e+00 t)

43

+ -6.2500e+00 t(0) exp(-3.0000e+00 t)

+ 1.0000e+01 t(0) exp(-4.0000e+00 t)

+ -4.7500e+00 t(0) exp(-5.0000e+00 t)

mean: 8.1111e-01

variance: 2.3136e-01

information about system m node 5

probability of entering node: 1.0000e+00

conditional CDF for time of reaching this absorbing state

-2.5000e+00 t(1) exp(-3.0000e+00 t)

+ 1.0000e+00 t(0) exp(0.0000e+00 t)

+ -6.2500e+00 t(0) exp(-3.0000e+00 t)

+ 1.0000e+01 t(0) exp(-4.0000e+00 t)

+ -4.7500e+00 t(0) exp(-5.0000e+00 t)

mean: 8.1111e-01

variance: 2.3136e-01

information about system m node 1

transient state probability:

1.0000e+00 t(0) exp(-3.0000e+00 t)

information about system m node 2

transient state probability:

1.0000e+00 t(1) exp(-3.0000e+00 t)

information about system m node 3

transient state probability:

2.0000e+00 t(0) exp(-3.0000e+00 t)

+ -2.0000e+00 t(0) exp(-4.0000e+00 t)

information about system m node 4

transient state probability:

1.5000e+00 t(1) exp(-3.0000e+00 t)

+ 3.2500e+00 t(0) exp(-3.0000e+00 t)

+ -8.0000e+00 t(0) exp(-4.0000e+00 t)

+ 4.7500e+00 t(0) exp(-5.0000e+00 t)

44

value(.1;m,1): 7.4082e-01

value(.1;m,2): 7.4082e-02

value(.1;m,3): 1.4100e-01

value(.1;m,4): 3.7242e-02

value(.1;m,5): 6.8614e-03

value(.1;m,1)+value(.1;m,2)+value(.1;m,3)+\

value(.1;m,4)+value(.1;m,5):1.0000e+00

value(.2;m,1)+value(.2;m,2)+value(.2;m,3)+\

value(.2;m,4)+value(.2;m,5):1.0000e+00

value(.5;m,1)+value(.5;m,2)+value(.5;m,3)+\

value(.5;m,4)+value(.5;m,5):1.0000e+00

information about system m2 node 1

probability of entering node: 4.0000e-01

conditional CDF for time of leaving this node

1.0000e+00 t(0) exp(0.0000e+00 t)

+ -1.0000e+00 t(0) exp(-3.0000e+00 t)

mean: 3.3333e-01

variance: 1.1111e-01

information about system m2 node 2

probability of entering node: 7.3333e-01

conditional CDF for time of leaving this node

-5.4545e-01 t(1) exp(-3.0000e+00 t)

+ 1.0000e+00 t(0) exp(0.0000e+00 t)

+ -1.3273e+00 t(0) exp(-3.0000e+00 t)

+ 3.2727e-01 t(0) exp(-8.0000e+00 t)

mean: 4.6212e-01

variance: 1.5197e-01

45

information about system m2 node 3

probability of entering node: 2.6667e-01

conditional CDF for time of leaving this node

1.0000e+00 t(0) exp(0.0000e+00 t)

+ -4.0000e+00 t(0) exp(-3.0000e+00 t)

+ 3.0000e+00 t(0) exp(-4.0000e+00 t)

mean: 5.8333e-01

variance: 1.7361e-01

information about system m2 node 4

probability of entering node: 1.0000e+00

conditional CDF for time of leaving this node

-1.0000e+00 t(1) exp(-3.0000e+00 t)

+ 1.0000e+00 t(0) exp(0.0000e+00 t)

+ -4.6000e+00 t(0) exp(-3.0000e+00 t)

+ 4.0000e+00 t(0) exp(-4.0000e+00 t)

+ -4.0000e-01 t(0) exp(-8.0000e+00 t)

mean: 6.9444e-01

variance: 2.0062e-01

information about system m2 node A

probability of entering node: 4.0000e-01

conditional CDF for time of leaving this node

1.0000e+00 t(0) exp(0.0000e+00 t)

+ -1.0000e+00 t(0) exp(-8.0000e+00 t)

mean: 1.2500e-01

variance: 1.5625e-02

information about system m2 node 5

probability of entering node: 1.0000e+00

conditional CDF for time of reaching this absorbing state

46

-1.0000e+00 t(1) exp(-3.0000e+00 t)

+ 1.0000e+00 t(0) exp(0.0000e+00 t)

+ -4.6000e+00 t(0) exp(-3.0000e+00 t)

+ 4.0000e+00 t(0) exp(-4.0000e+00 t)

+ -4.0000e-01 t(0) exp(-8.0000e+00 t)

mean: 6.9444e-01

variance: 2.0062e-01

information about system m2 node 1

transient state probability:

4.0000e-01 t(0) exp(-3.0000e+00 t)

information about system m2 node 2

transient state probability:

4.0000e-01 t(1) exp(-3.0000e+00 t)

+ 8.4000e-01 t(0) exp(-3.0000e+00 t)

+ -6.4000e-01 t(0) exp(-8.0000e+00 t)

information about system m2 node 3

transient state probability:

8.0000e-01 t(0) exp(-3.0000e+00 t)

+ -8.0000e-01 t(0) exp(-4.0000e+00 t)

information about system m2 node 4

transient state probability:

6.0000e-01 t(1) exp(-3.0000e+00 t)

+ 2.5600e+00 t(0) exp(-3.0000e+00 t)

+ -3.2000e+00 t(0) exp(-4.0000e+00 t)

+ 6.4000e-01 t(0) exp(-8.0000e+00 t)

information about system m2 node A

transient state probability:

4.0000e-01 t(0) exp(-8.0000e+00 t)

value(.1;m2,1): 2.9633e-01

value(.1;m2,2): 3.6435e-01

value(.1;m2,3): 5.6399e-02

value(.1;m2,4): 8.3490e-02

47

value(.1;m2,5): 1.9703e-02

value(.1;m2,A): 1.7973e-01

value(.1;m2,1)+value(.1;m2,2)+value(.1;m2,3)+\

value(.1;m2,4)+value(.1;m2,5)+value(.1;m2,A): 1.0000e+00

value(.2;m2,1)+value(.2;m2,2)+value(.2;m2,3)+\

value(.2;m2,4)+value(.2;m2,5)+value(.2;m2,A): 1.0000e+00

value(.5;m2,1)+value(.5;m2,2)+value(.5;m2,3)+\

value(.5;m2,4)+value(.5;m2,5)+value(.5;m2,A): 1.0000e+00

information about system mm node a

transient state probability:

1.0000e+00 t(0) exp(-1.6000e+01 t)

information about system mm node b

probability of entering node: 1.8750e-01

conditional CDF for time of reaching this absorbing state

1.0000e+00 t(0) exp(0.0000e+00 t)

+ -1.0000e+00 t(0) exp(-1.6000e+01 t)

mean: 6.2500e-02

variance: 3.9062e-03

information about system mm node c

probability of entering node: 5.6250e-01

conditional CDF for time of reaching this absorbing state

1.0000e+00 t(0) exp(0.0000e+00 t)

+ -1.0000e+00 t(0) exp(-1.6000e+01 t)

mean: 6.2500e-02

variance: 3.9062e-03

48

information about system mm node d

probability of entering node: 2.5000e-01

conditional CDF for time of reaching this absorbing state

1.0000e+00 t(0) exp(0.0000e+00 t)

+ -1.0000e+00 t(0) exp(-1.6000e+01 t)

mean: 6.2500e-02

variance: 3.9062e-03

value(.1;mm,a)+value(.1;mm,b)+value(.1;mm,c)+\

value(.1;mm,d):1.0000e+00

10.8 Queuing Network

This example is Ex.9.16 of KST. This implements the queueing network ignoring the
memory constraint. This corresponds to E[R̂] in table 9.12. The following is the input
to SHARPE:

bind

p0 0.05

p1 0.5

p2 0.3

p3 0.15

scpu 89.3

sio1 44.6

sio2 26.8

sio3 13.4

sterm 1/15

end

pfqn ex9.16(n)

cpu term p0

cpu io1 p1

cpu io2 p2

cpu io3 p3

io1 cpu 1

io2 cpu 1

io3 cpu 1

term cpu 1

end

cpu fcfs scpu

term is sterm

io1 fcfs sio1

io2 fcfs sio2

io3 fcfs sio3

end

cust n

end

49

func ET(N) scpu*util(ex9.16,cpu;N)*p0

func ERhat(M) M/ET(M) - 1/sterm

expr ERhat(10)

expr ERhat(20)

expr ERhat(30)

expr ERhat(40)

expr ERhat(50)

expr ERhat(60)

end

with the following output:

ERhat(10): 1.0228e+00

ERhat(20): 1.2080e+00

ERhat(30): 1.4623e+00

ERhat(40): 1.8228e+00

ERhat(50): 2.3468e+00

ERhat(60): 3.1121e+00

10.9 Irreducible Markov Chain with reward rates

In this example, the following language features are used: Markov chain speci�cation
with reward rates; user-de�ned functions; variable binding; built-in function exrss;
built-in function tvalue, sum and sreward; evaluated names; and loop to print results.
The following is the input to SHARPE:

markov irred readprobs

4 3 4*lambda

3 2 3*lambda

2 1 2*lambda

1 0 lambda

0 1 4*mu

1 2 3*mu

2 3 2*mu

3 4 mu

reward

50

4 40

3 25

2 10

1 3

end

4 1

end

bind lambda 100

bind mu 10

****ask for expected steady-state reward rate

expr exrss(irred)

****define a function giving transient reward rate

func treward(t) sum(i,0,4,sreward(irred,$i)*tvalue(t;irred,$i))

loop t,0,.05,.01

expr treward(t)

end

end

which produces the following results:

exrss(irred): 1.3005e+00

t=0.000000

treward(t): 4.0000e+01

t=0.010000

treward(t): 9.1261e+00

t=0.020000

treward(t): 3.2775e+00

t=0.030000

treward(t): 1.8927e+00

t=0.040000

treward(t): 1.4906e+00

t=0.050000

treward(t): 1.3630e+00

10.10 Phase-type Markov Chain

In this example, the following language features are used: markov chain speci�cation,
cdf to print results, and imag on/o�. The following is the input to SHARPE:

* a phase-type markov chain

51

* the only absorbing state is 6

markov phase

1 2 5

2 3 1

2 4 4

2 6 7

3 1 3

3 4 11

3 5 5

3 6 3

4 3 15

5 4 6

end

1 1

end

* cdf (phase) is a function of t giving

* the probability that absorption is

* reached in time <= t.

* cdf (phase) is the same as cdf(phase,6)

cdf(phase)

* print the result with i instead of

* sin/cos

imag on

cdf(phase)

* print transient probability function.

* this is a function of t giving the

* instantaneous probability of being in

* state 4 at time t

imag off

cdf(phase,4)

end

which results in the output of:

CDF for system phase:

1.0000e+00 t(0) exp(0.0000e+00 t)

+ -6.5053e-01 t(0) exp(-1.2207e+00 t)

+ -7.1142e-01 t(0) exp(-5.2558e+00 t)

+ 3.6014e-01 t(0) exp(-1.1174e+01 t) cos 1.8397e+00 t

+ -2.4602e-01 t(0) exp(-1.1174e+01 t) sin 1.8397e+00 t

+ 1.8126e-03 t(0) exp(-3.1176e+01 t)

mean: 6.4035e-01

variance: 5.1045e-01

52

CDF for system phase:

1.0000e+00 t(0) exp(0.0000e+00 t)

+ -6.5053e-01 t(0) exp(-1.2207e+00 t)

+ -7.1142e-01 t(0) exp(-5.2558e+00 t)

+ 1.8007e-01+1.2301e-01i t(0) exp(-1.1174e+01+1.8397e+00i t)

+ 1.8007e-01-1.2301e-01i t(0) exp(-1.1174e+01-1.8397e+00i t)

+ 1.8126e-03 t(0) exp(-3.1176e+01 t)

mean: 6.4035e-01

variance: 5.1045e-01

information about system phase node 4

transient state probability:

1.9374e-01 t(0) exp(-1.2207e+00 t)

+ -1.0958e-01 t(0) exp(-5.2558e+00 t)

+ -9.4970e-02 t(0) exp(-1.1174e+01 t) cos 1.8397e+00 t

+ -5.7818e-01 t(0) exp(-1.1174e+01 t) sin 1.8397e+00 t

+ 1.0807e-02 t(0) exp(-3.1176e+01 t)

10.11 Reliability block diagram

In this example, summarized below, the following language features are used: relia-
bility block diagram speci�cation, user-de�ned distributions, built-in function values,
and cdf to print results.

The input to SHARPE:

* user-defined distributions for RELCOMP

poly activeE (lambda) gen\

1,0,0\

-2,0,-lambda\

1,0,-2*lambda

poly activeU (lambda,s) gen\

1,0,0\

-1,0,-lambda\

-1,0,-mu\

1,0,-(lambda+mu)

poly standbyE (lambda,s) gen\

1,0,0\

-1,0,-lambda\

-lambda,1,-(lambda+s)

53

poly standbyU (lambda,mu,s) gen\

1,0,0\

-1,0,-lambda\

-lambda/(mu-lambda), 0, -(lambda+s)\

lambda/(mu-lambda), 0, -(mu+s),

* note this distribution has mass only

* at zero and infinity

poly oneshot(p) gen\

1-p,0,0

block KN (lambda, k, n)

comp x exp(lambda)

kofn top n-k+1,n,x

end

* here we define a distribution to be

* the CDF of a block diagram

poly binomial (lambda,k,n)\

cdf (KN;lambda,k,n)

block DP

comp receiver exp (.0002)

comp tuner activeE (.00025)

comp mux standbyE (.00025, .000005)

comp cpu binomial (.0004, 2, 3)

series DP receiver tuner mux cpu

end

* probability of failure at t = 20

expr 1-value(20;DP)

* CDF of time-to-failure

cdf(DP)

end

which produces the following result:

1-value(20;DP) : 9.9578e-01

CDF for system DP:

-1.5000e-03 t(1) exp(-1.5050e-03 t)

+ 7.5000e-04 t(1) exp(-1.7550e-03 t)

+ 1.0000e-03 t(1) exp(-1.9050e-03 t)

+ -5.0000e-04 t(1) exp(-2.1550e-03 t)

+ 1.0000e+00 t(0) exp(0.0000e+00 t)

+ -6.0000e+00 t(0) exp(-1.5000e-03 t)

54

+ 3.0000e+00 t(0) exp(-1.7500e-03 t)

+ 4.0000e+00 t(0) exp(-1.9000e-03 t)

+ -2.0000e+00 t(0) exp(-2.1500e-03 t)

mean: 1.3615e+03

variance: 9.9601e+05

10.12 Product-form queueing network

This is Example 9.6 from KST. In this example, the following language features
are used: product-form queueing network speci�cation; built-in functions tput, util,
qlength, rtime; and loop to print results. The input to SHARPE is:

* central-server queueing system

bind

p1 0.667

p2 o.233

end

pfqn csm

cpu disk1 p1

cpu disk2 p2

disk1 cpu 1

disk2 cpu 1

end

* fcfs servers

cpu fcfs 1000/20

disk1 fcfs 1000/30

disk2 fcfs 1000/42.918

end

* number of jobs

chain1 custs

end

loop i,2,10,2

bind custs i

expr tput(csm,cpu)

expr util(csm,cpu)

expr qlength(csm,cpu)

expr rtime(csm,cpu)

end

end

which produces the output:

i=2.000000

55

custs <- 2.000000

tput(csm,cpu): 2.9406e+01

util(csm,cpu): 5.8811e-01

qlength(csm,cpu): 8.2331e-01

rtime(csm,cpu): 2.7998e-02

i=4.000000

custs <- 4.000000

tput(csm,cpu): 3.7976e+01

util(csm,cpu): 7.5952e-01

qlength(csm,cpu): 1.7202e+00

rtime(csm,cpu): 4.5298e-02

i=6.000000

custs <- 6.000000

tput(csm,cpu): 4.1733e+01

util(csm,cpu): 8.3465e-01

qlength(csm,cpu): 2.6591e+00

rtime(csm,cpu): 6.3717e-02

i=8.000000

custs <- 8.000000

tput(csm,cpu): 4.3753e+01

util(csm,cpu): 8.7506e-01

qlength(csm,cpu): 3.6209e+00

rtime(csm,cpu): 8.2758e-02

i=10.000000

custs <- 10.000000

tput(csm,cpu): 4.4992e+01

util(csm,cpu): 8.9983e-01

qlength(csm,cpu): 4.5955e+00

rtime(csm,cpu): 1.0214e-01

10.13 Generalized Stochastic Petri Net

In this example, which is summarized below, the following language features are used:
generalized stochastic petri net speci�cation; user-de�ned variables; built-in functions
prempty, etok, tput, util; and expr to print results. The input to SHARPE:

bind

lambda 1.2

mu 2.0

gamma 0.0001

tau 0.1

K 10

end

* M/M/1/K queueing system where

* server can fail and be repaired

gspn mm1k-fail

* places and initial number of tokens

56

jobsource K

queue 0

serverup 1

serverdown 0

end

* timed transitions and rates

job-arrival ind lambda

service ind mu

failure ind gamma

repair ind tau

end

* immediate transitions (none here)

end

* enabling arc place -$>$

* and number of tokens

jobsource job-arrival 1

queue service 1

serverup failure 1

serverdown repair 1

end

* transition -$>$ place and number of tokens

job-arrival queue 1

service jobsource 1

failure serverdown 1

repair serverup 1

end

* and number of tokens

serverdown service 1

end

* use variables to define some measures of interest

* probability that the server is idle

var Pidle prempty(mm1k-fail,queue)

* probability that a job is rejected - this happens

* if all K tokens are in the queue and none are in

* the jobsource place

var Preject prempty(mm1k-fail,jobsource)

* reject rate

var Lreject lambda * prempty(mm1k-fail,jobsource)

* average queue length is the average number

* of tokens in the queue place

var avquelenth etok(mm1k-fail,queue)

* throughput is the throughput of the server

* transition

var thruput tput(mm1k-fail,service)

* utilization is the utilization of the server

57

* transition

var utilization util(mm1k-fail,service)

expr Pidle

expr Lreject, Preject

expr avquelenth

expr thruput, utilization

end

produces the following results:

Pidle : 4.0083e-01

Lreject: 3.6034e-03

Preject : 3.0029e-03

avquelenth : 1.4688e+00

thruput: 1.1964e+00

utilization : 5.9820e-01

10.14 Series-parallel acyclic graph

In this example, the following language features are used: series-parallel acyclic graph
speci�cation, user-de�ned distribution with mass at in�nity, and cdf to print results.
The input to SHARPE:

* The following user-defined distribution

* is ``defective''. f is the probability

* that the task never completes.

poly F(f, u) gen 1-f, 0, 0 -(1-f), 0, -u

graph main (f1,f2,f3,f4,f5.f6,f7,f8,f9,f10,u)

e1 e2

e2 e3

e2 ez

e3 e5

e5 e7

e5 e9

e7 e10

58

e9 e10

ez e4

ez e6

e4 e8

e6 e8

e8 e10

end

exit e2 prob

exit e5 min

exit ez max

prob e2 e3 p23

dist ez zero

dist e1 F(f1, u)

dist e2 F(f2, u)

dist e3 F(f3, u)

dist e4 F(f4, u)

dist e5 F(f5, u)

dist e6 F(f6, u)

dist e8 F(f8, u)

dist e9 F(f9, u)

dist e10 F(f10, u)

end

bind p23 .6

* f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 u

cdf(main;.02,.03,.04,.05,.06,.07,.08,.09,.04,.09,3)

cdf(main; 0, 0, 0, 0, 0, 0, 0, 0, .2, 0, 3)

end

produces the following results:

CDF for system main:

probability at infinity: 2.5493e-01

continuous probability: 7.4507e-01

-1.0774e-01 t(5) exp(-3.0000e+00 t)

+ -4.8496e+00 t(4) exp(-3.0000e+00 t)

+ -2.3943e-01 t(3) exp(-3.0000e+00 t)

+ -6.4662e+00 t(2) exp(-3.0000e+00 t)

+ -1.5962e-01 t(1) exp(-3.0000e+00 t)

+ 7.4507e-01 t(0) exp(0.0000e+00 t)

+ -1.4369e+00 t(0) exp(-3.0000e+00 t)

+ 6.9186e-01 t(0) exp(-6.0000e+00 t)

mean and variance are conditional on finite time

mean: 1.8452e+00

variance: 5.9113e-01

CDF for system main:

59

-2.4300e-01 t(5) exp(-3.0000e+00 t)

+ -6.3450e+00 t(4) exp(-3.0000e+00 t)

+ -2.3943e-01 t(3) exp(-3.0000e+00 t)

+ -8.4600e+00 t(2) exp(-3.0000e+00 t)

+ -3.6000e-01 t(1) exp(-3.0000e+00 t)

+ 1.0000e+00 t(0) exp(0.0000e+00 t)

+ -1.8800e+00 t(0) exp(-3.0000e+00 t)

+ 8.8000e-01 t(0) exp(-6.0000e+00 t)

mean: 1.8533e+00

variance: 5.9627e-01

10.15 Markov Chain inside a graph

In this example, the following language features are used: markov chain speci�cation,
series-parallel acyclic graph speci�cation, and use of cdf as a component distribution
speci�cation. The input to SHARPE:

bind

r1 2

r2 5

r3 4

r4 3

r5 8

r6 3

r9 2

p63 .8

end

* Markov chain for task loop inside graph

markov LOOP

3 6 r3

6 3 r6*p63

6 d r6*(1-p63)

end

3 1

end

* Task graph with CDF of another model

* as a parameter

graph outer

1 2

1 3-6

2 4

2 5

4 9

5 9

3-6 9

end

exit 1 max

60

exit 2 max

dist 1 exp(r1)

dist 2 exp(r2)

dist 4 exp(r4)

dist 5 exp(r5)

dist 9 exp(r9)

dist 3-6 CDF(LOOP)

end

* cdf(outer) gives the exact cumulative

* distribution function for the time-to-finish

*of the graph with loop.

cdf(outer)

end

produces the following output:

CDF for system outer:

-1.5832e+00 t(1) exp(-2.0000e+00 t)

+ 1.0000e+00 t(0) exp(0.0000e+00 t)

+ -1.5758e+00 t(0) exp(-3.6153e-01 t)

+ 4.8098e+00 t(0) exp(-2.0000e+00 t)

+ -1.0000e+01 t(0) exp(-3.0000e+00 t)

+ 5.7051e+00 t(0) exp(-3.3615e+00 t)

+ 2.9630e-01 t(0) exp(-5.0000e+00 t)

+ -2.4958e-01 t(0) exp(-5.3615e+00 t)

+ 1.0708e-02 t(0) exp(-6.6385e+00 t)

+ 1.8519e-01 t(0) exp(-8.0000e+00 t)

+ -1.7422e-01 t(0) exp(-8.3615e+00 t)

+ -9.8715e-03 t(0) exp(-9.6385e+00 t)

+ -4.1152e-02 t(0) exp(-1.1000e+01 t)

+ 4.0226e-02 t(0) exp(-1.1362e+01 t)

+ 1.6533e-03 t(0) exp(-1.1638e+01 t)

+ 2.4039e-03 t(0) exp(-1.4638e+01 t)

+ -7.8503e-04 t(0) exp(-1.7638e+01 t)

mean: 3.9701e+00

variance: 7.9428e+00

A Using sharpe

SHARPE is a powerful tool for solving a variety of mathematical models. We now
step through the example of section 10.1 to illustrate the way of using SHARPE.

This example gives the solution for the Memory interference model (from section
7.5.1 on page 326, Probability and Statistics with Reliability Queuing and Computer
Science Applications). The system is a shared memory multiprocessor system. The
processors' ability to share the entire memory space provides a convenient means
of sharing information and provides convenient means of sharing information and
provides
exibility in memory allocation. The price of sharing is the contention for the

61

shared resource. To reduce contention, the memory is usually split up into modules,
which can be accessed independently and concurrently with other modules. When
more than one processor attempts to access the same module, only one processor can
be granted access, while other processors must await their turn in a queue. The e�ect
of such contention, or interference, is to increase the average memory access time.

The model for this system is given on page 328. For clarity the program of section
10.1 is duplicated below:

markov mem_interfere

11 02 q2*q2

11 20 q1*q1

02 11 q1

20 11 q2

end

bind

q1 .6

q2 .4

end

expr prob(mem_interfere,11)

expr prob(mem_interfere,02)

expr prob(mem_interfere,20)

end

The �rst line of the program speci�es the system type and the system name which
the author of the program chooses to use. All the lines till an end is encountered are
transition probabilities. The transition probabilities are speci�ed from left to right.
That is, the transition probability of going from state 11 to state 20 is q2*q2.

The next section binds the variable q1 and q2 to numerical values. These values have
been chosen arbitrarily.

The last section uses the built-in functions expr and prob to �nd and print out the
steady state probabilities of all the states. The output produced is exactly the same
as in the right column of the �gure in section 10.1. The last end, ends the model
speci�cation.

It is easily seen that the transition probabilities from a state do not sum to 1 despite
it being a irreducible discrete-time chain. It is because SHARPE does not allow self
loops. A discrete-time chain is speci�ed as a continuous-time chain with the transition
rates being replaced with the transition probabilities. The probabilities associated
with the self loops are not entered. SHARPE by itself substitutes the values and
solves the chain as if it were a continuous-time chain. This does not a�ect the solution
of the discrete chain. You should try to prove it mathematically.

The name of the �le containing the SHARPE program can have any name and no
extension is required (you may put it in if you want).

Following are the step in using SHARPE:

62

1. Write the program for solving the model in SHARPE.

2. At the prompt type the command words in bold face as it is:
sharpe �lename

SHARPE will print the results on your screen. To store the output in a �le the
command

sharpe �lename1 > �lename2

is used, where �lename1 contains the SHARPE program and �lename2 is the �le to
which you want to send the output. SHARPE takes options for running the programs
on command line. For the options refer to the language description

63

